L11a166
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a166's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X6718 X16,13,17,14 X14,6,15,5 X4,16,5,15 X20,11,21,12 X22,18,7,17 X18,22,19,21 X12,19,13,20 |
| Gauss code | {1, -2, 3, -7, 6, -4}, {4, -1, 2, -3, 8, -11, 5, -6, 7, -5, 9, -10, 11, -8, 10, -9} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^2 v^4-5 u^2 v^3+5 u^2 v^2-u^2 v-u v^4+5 u v^3-7 u v^2+5 u v-u-v^3+5 v^2-5 v+1}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{12}{q^{9/2}}-\frac{14}{q^{7/2}}-q^{5/2}+\frac{13}{q^{5/2}}+2 q^{3/2}-\frac{11}{q^{3/2}}+\frac{1}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{6}{q^{13/2}}-\frac{10}{q^{11/2}}-5 \sqrt{q}+\frac{8}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 \left(-z^3\right)-2 a^7 z+2 a^5 z^5+6 a^5 z^3+4 a^5 z+a^5 z^{-1} -a^3 z^7-4 a^3 z^5-6 a^3 z^3-6 a^3 z-2 a^3 z^{-1} +2 a z^5+7 a z^3-z^3 a^{-1} +6 a z+2 a z^{-1} -3 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^4-a^{10} z^2+3 a^9 z^5-3 a^9 z^3+a^9 z+5 a^8 z^6-5 a^8 z^4+2 a^8 z^2+6 a^7 z^7-7 a^7 z^5+4 a^7 z^3-a^7 z+5 a^6 z^8-4 a^6 z^6-2 a^6 z^4+2 a^6 z^2+3 a^5 z^9+a^5 z^7-12 a^5 z^5+12 a^5 z^3-6 a^5 z+a^5 z^{-1} +a^4 z^{10}+5 a^4 z^8-15 a^4 z^6+8 a^4 z^4-a^4 z^2+5 a^3 z^9-10 a^3 z^7-4 a^3 z^5+15 a^3 z^3-10 a^3 z+2 a^3 z^{-1} +a^2 z^{10}+2 a^2 z^8-14 a^2 z^6+13 a^2 z^4-3 a^2 z^2+a^2+2 a z^9-4 a z^7+z^7 a^{-1} -7 a z^5-5 z^5 a^{-1} +18 a z^3+8 z^3 a^{-1} -11 a z+2 a z^{-1} -5 z a^{-1} + a^{-1} z^{-1} +2 z^8-8 z^6+9 z^4-3 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



