L11n249
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n249's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X9,19,10,18 X5,14,6,15 X11,6,12,7 X15,11,16,22 X7,20,8,21 X3948 X21,17,22,16 X17,4,18,5 X10,13,1,14 X19,3,20,2 |
| Gauss code | {1, 11, -7, 9, -3, 4, -6, 7, -2, -10}, {-4, -1, 10, 3, -5, 8, -9, 2, -11, 6, -8, 5} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^3 v^3-3 u^3 v^2+2 u^3 v-2 u^2 v^3+7 u^2 v^2-7 u^2 v+u^2+u v^3-7 u v^2+7 u v-2 u+2 v^2-3 v+1}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-\frac{3}{q^{9/2}}-4 q^{7/2}+\frac{7}{q^{7/2}}+8 q^{5/2}-\frac{12}{q^{5/2}}-12 q^{3/2}+\frac{14}{q^{3/2}}+15 \sqrt{q}-\frac{16}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z+a^5 z^{-1} -a^3 z^5-3 a^3 z^3+z^3 a^{-3} -4 a^3 z+z a^{-3} -a^3 z^{-1} +a z^7+4 a z^5-2 z^5 a^{-1} +6 a z^3-5 z^3 a^{-1} +3 a z-3 z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -3 a z^9-3 z^9 a^{-1} -8 a^2 z^8-6 z^8 a^{-2} -14 z^8-8 a^3 z^7-8 a z^7-4 z^7 a^{-1} -4 z^7 a^{-3} -3 a^4 z^6+13 a^2 z^6+14 z^6 a^{-2} -z^6 a^{-4} +31 z^6+13 a^3 z^5+27 a z^5+24 z^5 a^{-1} +10 z^5 a^{-3} -3 a^4 z^4-10 a^2 z^4-7 z^4 a^{-2} +2 z^4 a^{-4} -16 z^4-6 a^5 z^3-15 a^3 z^3-18 a z^3-16 z^3 a^{-1} -7 z^3 a^{-3} +a^4 z^2+3 a^2 z^2-z^2 a^{-4} +3 z^2+5 a^5 z+7 a^3 z+4 a z+3 z a^{-1} +z a^{-3} +a^4-a^5 z^{-1} -a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



