L11n130

From Knot Atlas
Revision as of 02:13, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n129.gif

L11n129

L11n131.gif

L11n131

L11n130.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n130 at Knotilus!


Link Presentations

[edit Notes on L11n130's Link Presentations]

Planar diagram presentation X8192 X11,19,12,18 X3,10,4,11 X17,3,18,2 X5,13,6,12 X6718 X9,16,10,17 X13,20,14,21 X15,22,16,7 X19,4,20,5 X21,14,22,15
Gauss code {1, 4, -3, 10, -5, -6}, {6, -1, -7, 3, -2, 5, -8, 11, -9, 7, -4, 2, -10, 8, -11, 9}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation L11n130 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
0         1-1
-2        3 3
-4       32 -1
-6      62  4
-8     44   0
-10    55    0
-12   34     1
-14  25      -3
-16 13       2
-18 2        -2
-201         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n129.gif

L11n129

L11n131.gif

L11n131