L11a151
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a151's Link Presentations]
| Planar diagram presentation | X8192 X10,3,11,4 X14,6,15,5 X16,11,17,12 X20,13,21,14 X22,17,7,18 X18,21,19,22 X12,19,13,20 X4,16,5,15 X2738 X6,9,1,10 |
| Gauss code | {1, -10, 2, -9, 3, -11}, {10, -1, 11, -2, 4, -8, 5, -3, 9, -4, 6, -7, 8, -5, 7, -6} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 u^2 v^3-4 u^2 v^2+4 u^2 v-2 u^2+2 u v^4-8 u v^3+11 u v^2-8 u v+2 u-2 v^4+4 v^3-4 v^2+2 v}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{17}{q^{9/2}}-\frac{16}{q^{7/2}}+\frac{11}{q^{5/2}}-\frac{7}{q^{3/2}}+\frac{1}{q^{21/2}}-\frac{3}{q^{19/2}}+\frac{7}{q^{17/2}}-\frac{11}{q^{15/2}}+\frac{15}{q^{13/2}}-\frac{18}{q^{11/2}}-\sqrt{q}+\frac{3}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^9-z a^9-a^9 z^{-1} +z^5 a^7+z^3 a^7+2 z a^7+2 a^7 z^{-1} +2 z^5 a^5+3 z^3 a^5+z a^5+z^5 a^3-2 z a^3-a^3 z^{-1} -z^3 a-z a }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{12}+3 z^4 a^{12}-2 z^2 a^{12}-3 z^7 a^{11}+8 z^5 a^{11}-5 z^3 a^{11}-5 z^8 a^{10}+14 z^6 a^{10}-14 z^4 a^{10}+8 z^2 a^{10}-2 a^{10}-4 z^9 a^9+7 z^7 a^9-5 z^5 a^9+7 z^3 a^9-4 z a^9+a^9 z^{-1} -z^{10} a^8-9 z^8 a^8+27 z^6 a^8-29 z^4 a^8+18 z^2 a^8-5 a^8-7 z^9 a^7+10 z^7 a^7-5 z^5 a^7+5 z^3 a^7-5 z a^7+2 a^7 z^{-1} -z^{10} a^6-9 z^8 a^6+19 z^6 a^6-15 z^4 a^6+7 z^2 a^6-3 a^6-3 z^9 a^5-5 z^7 a^5+17 z^5 a^5-15 z^3 a^5+4 z a^5-5 z^8 a^4+4 z^6 a^4+2 z^4 a^4-3 z^2 a^4+a^4-5 z^7 a^3+8 z^5 a^3-6 z^3 a^3+4 z a^3-a^3 z^{-1} -3 z^6 a^2+5 z^4 a^2-2 z^2 a^2-z^5 a+2 z^3 a-z a }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



