L10n57
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n57's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X20,5,9,6 X3,15,4,14 X15,5,16,4 X7,17,8,16 X11,18,12,19 X17,12,18,13 X2,9,3,10 X13,1,14,8 X6,19,7,20 |
| Gauss code | {1, -8, -3, 4, 2, -10, -5, 9}, {8, -1, -6, 7, -9, 3, -4, 5, -7, 6, 10, -2} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (u+1)^2 (v-1)}{u^{3/2} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{1}{q^{9/2}}-q^{7/2}-\frac{1}{q^{7/2}}+q^{5/2}-\frac{1}{q^{3/2}}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^3-3 a^3 z-z a^{-3} +a z^5+5 a z^3+5 a z-z a^{-1} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^3 z^7-a z^7-a^4 z^6-a^2 z^6-z^6 a^{-2} -z^6+6 a^3 z^5+7 a z^5-z^5 a^{-3} +5 a^4 z^4+6 a^2 z^4+5 z^4 a^{-2} +6 z^4-10 a^3 z^3-14 a z^3+4 z^3 a^{-3} -5 a^4 z^2-7 a^2 z^2-5 z^2 a^{-2} -7 z^2+6 a^3 z+10 a z+2 z a^{-1} -2 z a^{-3} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



