L11n72
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n72's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X7,16,8,17 X22,18,5,17 X18,12,19,11 X12,22,13,21 X20,14,21,13 X14,20,15,19 X15,8,16,9 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -3, 9, 11, -2, 5, -6, 7, -8, -9, 3, 4, -5, 8, -7, 6, -4} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v^3-5 u v^2+6 u v-2 u-2 v^3+6 v^2-5 v+2}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-3 q^{7/2}+5 q^{5/2}-8 q^{3/2}+10 \sqrt{q}-\frac{10}{\sqrt{q}}+\frac{9}{q^{3/2}}-\frac{8}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{2}{q^{9/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^{-1} +a^3 z^3+z^3 a^{-3} -a^3 z-a^3 z^{-1} +z a^{-3} -a z^5-z^5 a^{-1} -a z^3-2 z^3 a^{-1} -2 z a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 3 a^5 z^3-3 a^5 z+a^5 z^{-1} +a^4 z^6+z^6 a^{-4} +2 a^4 z^4-3 z^4 a^{-4} +a^4 z^2+2 z^2 a^{-4} -a^4+2 a^3 z^7+3 z^7 a^{-3} +a^3 z^5-10 z^5 a^{-3} +9 z^3 a^{-3} -a^3 z-z a^{-3} +a^3 z^{-1} +2 a^2 z^8+3 z^8 a^{-2} +a^2 z^6-7 z^6 a^{-2} -2 a^2 z^4+2 z^4 a^{-2} +z^2 a^{-2} +a z^9+z^9 a^{-1} +3 a z^7+4 z^7 a^{-1} -4 a z^5-15 z^5 a^{-1} -3 a z^3+9 z^3 a^{-1} +2 a z-z a^{-1} +5 z^8-8 z^6+z^4-2 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



