L11a499
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a499's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X16,8,17,7 X22,17,19,18 X20,12,21,11 X10,20,11,19 X18,21,5,22 X14,10,15,9 X8,16,9,15 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {6, -5, 7, -4}, {10, -1, 3, -9, 8, -6, 5, -2, 11, -8, 9, -3, 4, -7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(2 t(3)^2-3 t(3)+2\right)}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+3 q^7-7 q^6+12 q^5-16 q^4+19 q^3-17 q^2+16 q-11+7 q^{-1} -2 q^{-2} + q^{-3} }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} +z^4 a^{-2} +3 z^4 a^{-4} -z^4 a^{-6} -2 z^4+a^2 z^2-z^2 a^{-2} +6 z^2 a^{-4} -2 z^2 a^{-6} -4 z^2+2 a^2+4 a^{-4} -2 a^{-6} -4+a^2 z^{-2} + a^{-2} z^{-2} -2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-9} -2 z^3 a^{-9} +3 z^6 a^{-8} -5 z^4 a^{-8} +6 z^7 a^{-7} -13 z^5 a^{-7} +11 z^3 a^{-7} -4 z a^{-7} +8 z^8 a^{-6} -21 z^6 a^{-6} +27 z^4 a^{-6} -14 z^2 a^{-6} +4 a^{-6} +5 z^9 a^{-5} -4 z^7 a^{-5} -9 z^5 a^{-5} +21 z^3 a^{-5} -8 z a^{-5} +z^{10} a^{-4} +14 z^8 a^{-4} -46 z^6 a^{-4} +62 z^4 a^{-4} -36 z^2 a^{-4} +8 a^{-4} +8 z^9 a^{-3} -14 z^7 a^{-3} +9 z^5 a^{-3} -3 z^3 a^{-3} +z^{10} a^{-2} +9 z^8 a^{-2} +a^2 z^6-26 z^6 a^{-2} -4 a^2 z^4+27 z^4 a^{-2} +6 a^2 z^2-16 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -4 a^2+3 z^9 a^{-1} +2 a z^7-2 z^7 a^{-1} -4 a z^5-11 z^3 a^{-1} +4 a z+8 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +3 z^8-3 z^6-7 z^4+12 z^2+2 z^{-2} -7 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



