L10a139
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a139's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X18,12,19,11 X14,8,15,7 X8,14,9,13 X20,15,13,16 X16,19,17,20 X12,18,5,17 X2536 X4,9,1,10 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 4, -5, 10, -2, 3, -8}, {5, -4, 6, -7, 8, -3, 7, -6} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(2)-1) \left(t(3) t(2)^2-2 t(2)^2-3 t(1) t(2)+2 t(1) t(3) t(2)-3 t(3) t(2)+2 t(2)+t(1)-2 t(1) t(3)\right)}{\sqrt{t(1)} t(2)^{3/2} \sqrt{t(3)}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} -3 q^{-5} +q^4+6 q^{-4} -2 q^3-8 q^{-3} +5 q^2+10 q^{-2} -7 q-10 q^{-1} +11} (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6-3 z^2 a^4-2 a^4+2 z^4 a^2+3 z^2 a^2+a^2 z^{-2} +3 a^2+z^4-2 z^2-2 z^{-2} -3-2 z^2 a^{-2} + a^{-2} z^{-2} + a^{-4} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 z^6-3 a^6 z^4+3 a^6 z^2-a^6+3 a^5 z^7-9 a^5 z^5+7 a^5 z^3-2 a^5 z+3 a^4 z^8-5 a^4 z^6-5 a^4 z^4+z^4 a^{-4} +6 a^4 z^2-2 z^2 a^{-4} -a^4+ a^{-4} +a^3 z^9+6 a^3 z^7-24 a^3 z^5+2 z^5 a^{-3} +21 a^3 z^3-2 z^3 a^{-3} -6 a^3 z+6 a^2 z^8-11 a^2 z^6+3 z^6 a^{-2} -a^2 z^4-3 z^4 a^{-2} +8 a^2 z^2+3 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -4 a^2-3 a^{-2} +a z^9+6 a z^7+3 z^7 a^{-1} -17 a z^5+11 a z^3-5 z^3 a^{-1} +2 a z+6 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +3 z^8-2 z^6-3 z^4+10 z^2+2 z^{-2} -7} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



