L10a83
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a83's Link Presentations]
| Planar diagram presentation | X8192 X12,3,13,4 X20,10,7,9 X14,17,15,18 X16,5,17,6 X4,15,5,16 X18,13,19,14 X10,20,11,19 X2738 X6,11,1,12 |
| Gauss code | {1, -9, 2, -6, 5, -10}, {9, -1, 3, -8, 10, -2, 7, -4, 6, -5, 4, -7, 8, -3} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{2 t(2)^2 t(1)^2-5 t(2) t(1)^2+2 t(1)^2-5 t(2)^2 t(1)+9 t(2) t(1)-5 t(1)+2 t(2)^2-5 t(2)+2}{t(1) t(2)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{6}{q^{3/2}}+\frac{9}{q^{5/2}}-\frac{12}{q^{7/2}}+\frac{12}{q^{9/2}}-\frac{12}{q^{11/2}}+\frac{9}{q^{13/2}}-\frac{6}{q^{15/2}}+\frac{3}{q^{17/2}}-\frac{1}{q^{19/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^9-2 z^3 a^7-z a^7+a^7 z^{-1} +z^5 a^5-2 z a^5-a^5 z^{-1} +z^5 a^3+z^3 a^3-z^3 a-z a }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{11} z^5-2 a^{11} z^3+a^{11} z+3 a^{10} z^6-6 a^{10} z^4+3 a^{10} z^2+4 a^9 z^7-6 a^9 z^5+2 a^9 z^3-a^9 z+3 a^8 z^8-6 a^8 z^4+3 a^8 z^2+a^7 z^9+7 a^7 z^7-14 a^7 z^5+7 a^7 z^3+a^7 z-a^7 z^{-1} +6 a^6 z^8-6 a^6 z^6+a^6+a^5 z^9+7 a^5 z^7-14 a^5 z^5+7 a^5 z^3+a^5 z-a^5 z^{-1} +3 a^4 z^8-6 a^4 z^4+3 a^4 z^2+4 a^3 z^7-6 a^3 z^5+2 a^3 z^3-a^3 z+3 a^2 z^6-6 a^2 z^4+3 a^2 z^2+a z^5-2 a z^3+a z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



