L11a263
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a263's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,4,13,3 X22,12,9,11 X14,6,15,5 X18,8,19,7 X20,18,21,17 X16,22,17,21 X2,9,3,10 X4,14,5,13 X6,16,7,15 X8,20,1,19 |
| Gauss code | {1, -8, 2, -9, 4, -10, 5, -11}, {8, -1, 3, -2, 9, -4, 10, -7, 6, -5, 11, -6, 7, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u^3 v^3-3 u^3 v^2+u^3 v-3 u^2 v^3+5 u^2 v^2-4 u^2 v+u^2+u v^3-4 u v^2+5 u v-3 u+v^2-3 v+2}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{23/2}-3 q^{21/2}+5 q^{19/2}-8 q^{17/2}+11 q^{15/2}-12 q^{13/2}+11 q^{11/2}-10 q^{9/2}+7 q^{7/2}-5 q^{5/2}+2 q^{3/2}-\sqrt{q} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^7 a^{-5} -z^7 a^{-7} +z^5 a^{-3} -4 z^5 a^{-5} -4 z^5 a^{-7} +z^5 a^{-9} +4 z^3 a^{-3} -4 z^3 a^{-5} -4 z^3 a^{-7} +3 z^3 a^{-9} +4 z a^{-3} -2 z a^{-5} -z a^{-7} +z a^{-9} + a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-14} -z^2 a^{-14} +3 z^5 a^{-13} -4 z^3 a^{-13} +z a^{-13} +4 z^6 a^{-12} -4 z^4 a^{-12} +z^2 a^{-12} +4 z^7 a^{-11} -2 z^5 a^{-11} -3 z^3 a^{-11} +2 z a^{-11} +4 z^8 a^{-10} -5 z^6 a^{-10} +2 z^4 a^{-10} +z^2 a^{-10} +3 z^9 a^{-9} -5 z^7 a^{-9} +5 z^5 a^{-9} -5 z^3 a^{-9} +2 z a^{-9} +z^{10} a^{-8} +3 z^8 a^{-8} -13 z^6 a^{-8} +11 z^4 a^{-8} -3 z^2 a^{-8} +5 z^9 a^{-7} -15 z^7 a^{-7} +12 z^5 a^{-7} -4 z^3 a^{-7} +z a^{-7} +z^{10} a^{-6} +z^8 a^{-6} -12 z^6 a^{-6} +12 z^4 a^{-6} -3 z^2 a^{-6} +2 z^9 a^{-5} -5 z^7 a^{-5} -3 z^5 a^{-5} +10 z^3 a^{-5} -5 z a^{-5} + a^{-5} z^{-1} +2 z^8 a^{-4} -8 z^6 a^{-4} +8 z^4 a^{-4} -z^2 a^{-4} - a^{-4} +z^7 a^{-3} -5 z^5 a^{-3} +8 z^3 a^{-3} -5 z a^{-3} + a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



