L11n149
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n149's Link Presentations]
| Planar diagram presentation | X8192 X9,19,10,18 X6718 X22,19,7,20 X12,5,13,6 X3,10,4,11 X4,15,5,16 X16,12,17,11 X20,13,21,14 X14,21,15,22 X17,2,18,3 |
| Gauss code | {1, 11, -6, -7, 5, -3}, {3, -1, -2, 6, 8, -5, 9, -10, 7, -8, -11, 2, 4, -9, 10, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^4-t(2)^4-3 t(1) t(2)^3+2 t(2)^3-2 t(1)^2 t(2)^2+3 t(1) t(2)^2-2 t(2)^2+2 t(1)^2 t(2)-3 t(1) t(2)-t(1)^2+t(1)}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{6}{q^{9/2}}-\frac{5}{q^{7/2}}+\frac{2}{q^{5/2}}-\frac{1}{q^{3/2}}+\frac{1}{q^{21/2}}-\frac{3}{q^{19/2}}+\frac{4}{q^{17/2}}-\frac{6}{q^{15/2}}+\frac{7}{q^{13/2}}-\frac{7}{q^{11/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 \left(-z^3\right)-a^9 z+a^7 z^5+3 a^7 z^3+4 a^7 z+a^7 z^{-1} -3 a^5 z^3-5 a^5 z-a^5 z^{-1} -a^3 z^3-a^3 z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{12}+3 z^4 a^{12}-z^2 a^{12}-3 z^7 a^{11}+11 z^5 a^{11}-9 z^3 a^{11}+z a^{11}-3 z^8 a^{10}+10 z^6 a^{10}-7 z^4 a^{10}+z^2 a^{10}-z^9 a^9-z^7 a^9+12 z^5 a^9-13 z^3 a^9+4 z a^9-4 z^8 a^8+13 z^6 a^8-14 z^4 a^8+6 z^2 a^8-z^9 a^7+2 z^7 a^7-3 z^5 a^7+3 z^3 a^7-3 z a^7+a^7 z^{-1} -z^8 a^6+2 z^6 a^6-6 z^4 a^6+5 z^2 a^6-a^6-4 z^5 a^5+6 z^3 a^5-5 z a^5+a^5 z^{-1} -2 z^4 a^4+z^2 a^4-z^3 a^3+z a^3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



