L10n35
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n35's Link Presentations]
| Planar diagram presentation | X6172 X3,13,4,12 X13,17,14,16 X9,15,10,14 X15,11,16,10 X17,5,18,20 X7,19,8,18 X19,9,20,8 X2536 X11,1,12,4 |
| Gauss code | {1, -9, -2, 10}, {9, -1, -7, 8, -4, 5, -10, 2, -3, 4, -5, 3, -6, 7, -8, 6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 (t(1)-1) (t(2)-1) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{19/2}+3 q^{17/2}-5 q^{15/2}+8 q^{13/2}-8 q^{11/2}+8 q^{9/2}-8 q^{7/2}+4 q^{5/2}-3 q^{3/2} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{-9} - a^{-9} z^{-1} +3 z^3 a^{-7} +7 z a^{-7} +5 a^{-7} z^{-1} -2 z^5 a^{-5} -8 z^3 a^{-5} -13 z a^{-5} -8 a^{-5} z^{-1} +3 z^3 a^{-3} +7 z a^{-3} +4 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-11} -2 z^3 a^{-11} +z a^{-11} +3 z^6 a^{-10} -7 z^4 a^{-10} +5 z^2 a^{-10} -2 a^{-10} +3 z^7 a^{-9} -3 z^5 a^{-9} -4 z^3 a^{-9} +z a^{-9} + a^{-9} z^{-1} +z^8 a^{-8} +8 z^6 a^{-8} -26 z^4 a^{-8} +24 z^2 a^{-8} -9 a^{-8} +7 z^7 a^{-7} -14 z^5 a^{-7} +12 z^3 a^{-7} -9 z a^{-7} +5 a^{-7} z^{-1} +z^8 a^{-6} +8 z^6 a^{-6} -25 z^4 a^{-6} +31 z^2 a^{-6} -14 a^{-6} +4 z^7 a^{-5} -10 z^5 a^{-5} +20 z^3 a^{-5} -19 z a^{-5} +8 a^{-5} z^{-1} +3 z^6 a^{-4} -6 z^4 a^{-4} +12 z^2 a^{-4} -8 a^{-4} +6 z^3 a^{-3} -10 z a^{-3} +4 a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



