L10n35

From Knot Atlas
Revision as of 02:18, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10n34.gif

L10n34

L10n36.gif

L10n36

L10n35.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n35 at Knotilus!


Link Presentations

[edit Notes on L10n35's Link Presentations]

Planar diagram presentation X6172 X3,13,4,12 X13,17,14,16 X9,15,10,14 X15,11,16,10 X17,5,18,20 X7,19,8,18 X19,9,20,8 X2536 X11,1,12,4
Gauss code {1, -9, -2, 10}, {9, -1, -7, 8, -4, 5, -10, 2, -3, 4, -5, 3, -6, 7, -8, 6}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n35 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ -\frac{2 (t(1)-1) (t(2)-1) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ -q^{19/2}+3 q^{17/2}-5 q^{15/2}+8 q^{13/2}-8 q^{11/2}+8 q^{9/2}-8 q^{7/2}+4 q^{5/2}-3 q^{3/2} }[/math] (db)
Signature 3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ -z a^{-9} - a^{-9} z^{-1} +3 z^3 a^{-7} +7 z a^{-7} +5 a^{-7} z^{-1} -2 z^5 a^{-5} -8 z^3 a^{-5} -13 z a^{-5} -8 a^{-5} z^{-1} +3 z^3 a^{-3} +7 z a^{-3} +4 a^{-3} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ z^5 a^{-11} -2 z^3 a^{-11} +z a^{-11} +3 z^6 a^{-10} -7 z^4 a^{-10} +5 z^2 a^{-10} -2 a^{-10} +3 z^7 a^{-9} -3 z^5 a^{-9} -4 z^3 a^{-9} +z a^{-9} + a^{-9} z^{-1} +z^8 a^{-8} +8 z^6 a^{-8} -26 z^4 a^{-8} +24 z^2 a^{-8} -9 a^{-8} +7 z^7 a^{-7} -14 z^5 a^{-7} +12 z^3 a^{-7} -9 z a^{-7} +5 a^{-7} z^{-1} +z^8 a^{-6} +8 z^6 a^{-6} -25 z^4 a^{-6} +31 z^2 a^{-6} -14 a^{-6} +4 z^7 a^{-5} -10 z^5 a^{-5} +20 z^3 a^{-5} -19 z a^{-5} +8 a^{-5} z^{-1} +3 z^6 a^{-4} -6 z^4 a^{-4} +12 z^2 a^{-4} -8 a^{-4} +6 z^3 a^{-3} -10 z a^{-3} +4 a^{-3} z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
012345678χ
20        11
18       2 -2
16      31 2
14     52  -3
12    33   0
10   55    0
8  33     0
6 15      4
423       -1
23        3
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=2 }[/math] [math]\displaystyle{ i=4 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n34.gif

L10n34

L10n36.gif

L10n36