L11n172
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n172's Link Presentations]
| Planar diagram presentation | X8192 X3,10,4,11 X12,7,13,8 X22,15,7,16 X14,6,15,5 X6,14,1,13 X16,21,17,22 X9,18,10,19 X20,11,21,12 X4,18,5,17 X19,3,20,2 |
| Gauss code | {1, 11, -2, -10, 5, -6}, {3, -1, -8, 2, 9, -3, 6, -5, 4, -7, 10, 8, -11, -9, 7, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^2 v^2-3 u^2 v+2 u^2-5 u v^2+9 u v-5 u+2 v^2-3 v+1}{u v} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{8}{q^{9/2}}+\frac{10}{q^{7/2}}-\frac{11}{q^{5/2}}-2 q^{3/2}+\frac{9}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{3}{q^{13/2}}+\frac{6}{q^{11/2}}+4 \sqrt{q}-\frac{8}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7+2 z^3 a^5+z a^5-a^5 z^{-1} -z^5 a^3-z^3 a^3+2 a^3 z^{-1} +3 z^3 a+3 z a-2 z a^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^8 z^6-3 a^8 z^4+2 a^8 z^2+3 a^7 z^7-9 a^7 z^5+6 a^7 z^3-a^7 z+4 a^6 z^8-12 a^6 z^6+10 a^6 z^4-6 a^6 z^2+2 a^6+2 a^5 z^9-a^5 z^7-8 a^5 z^5+5 a^5 z^3-a^5 z^{-1} +8 a^4 z^8-25 a^4 z^6+29 a^4 z^4-18 a^4 z^2+5 a^4+2 a^3 z^9-a^3 z^7-4 a^3 z^5+4 a^3 z^3+2 a^3 z-2 a^3 z^{-1} +4 a^2 z^8-11 a^2 z^6+18 a^2 z^4-11 a^2 z^2+3 a^2+3 a z^7-5 a z^5+8 a z^3+3 z^3 a^{-1} -3 a z-4 z a^{-1} + a^{-1} z^{-1} +z^6+2 z^4-z^2-1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



