L10a31
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a31's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X14,8,15,7 X20,16,5,15 X16,11,17,12 X18,9,19,10 X10,17,11,18 X8,19,9,20 X2536 X4,14,1,13 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -8, 6, -7, 5, -2, 10, -3, 4, -5, 7, -6, 8, -4} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{9/2}+3 q^{7/2}-6 q^{5/2}+7 q^{3/2}-9 \sqrt{q}+\frac{9}{\sqrt{q}}-\frac{8}{q^{3/2}}+\frac{6}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{2}{q^{9/2}}-\frac{1}{q^{11/2}}} (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z a^5+a^5 z^{-1} -2 z^3 a^3-4 z a^3-2 a^3 z^{-1} +z^5 a+2 z^3 a+2 z a+a z^{-1} +z^5 a^{-1} +2 z^3 a^{-1} +2 z a^{-1} + a^{-1} z^{-1} -z^3 a^{-3} -z a^{-3} - a^{-3} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^3 z^9-a z^9-2 a^4 z^8-6 a^2 z^8-4 z^8-a^5 z^7-a^3 z^7-6 a z^7-6 z^7 a^{-1} +9 a^4 z^6+22 a^2 z^6-7 z^6 a^{-2} +6 z^6+5 a^5 z^5+18 a^3 z^5+27 a z^5+8 z^5 a^{-1} -6 z^5 a^{-3} -12 a^4 z^4-24 a^2 z^4+9 z^4 a^{-2} -3 z^4 a^{-4} -8 a^5 z^3-30 a^3 z^3-27 a z^3+2 z^3 a^{-1} +6 z^3 a^{-3} -z^3 a^{-5} +5 a^4 z^2+11 a^2 z^2-2 z^2 a^{-2} +4 z^2+5 a^5 z+15 a^3 z+10 a z-3 z a^{-1} -3 z a^{-3} -a^4-3 a^2- a^{-2} -2-a^5 z^{-1} -2 a^3 z^{-1} -a z^{-1} + a^{-1} z^{-1} + a^{-3} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



