L11a401
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a401's Link Presentations]
| Planar diagram presentation | X6172 X18,12,19,11 X8493 X2,16,3,15 X16,7,17,8 X22,9,11,10 X4,17,1,18 X10,19,5,20 X12,6,13,5 X14,21,15,22 X20,13,21,14 |
| Gauss code | {1, -4, 3, -7}, {9, -1, 5, -3, 6, -8}, {2, -9, 11, -10, 4, -5, 7, -2, 8, -11, 10, -6} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(u-1) (v-1)^2 (w-1)^2 \left(w^2-w+1\right)}{\sqrt{u} v w^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-8} +5 q^{-7} -12 q^{-6} +20 q^{-5} -27 q^{-4} +q^3+32 q^{-3} -5 q^2-30 q^{-2} +12 q+28 q^{-1} -19} (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^6 z^4-a^6 z^2+2 a^4 z^6+5 a^4 z^4+3 a^4 z^2+a^4 z^{-2} -a^2 z^8-4 a^2 z^6-6 a^2 z^4-3 a^2 z^2-2 a^2 z^{-2} -a^2+z^6+2 z^4+z^2+ z^{-2} +1} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 a^4 z^{10}+4 a^2 z^{10}+13 a^5 z^9+24 a^3 z^9+11 a z^9+17 a^6 z^8+28 a^4 z^8+22 a^2 z^8+11 z^8+12 a^7 z^7-6 a^5 z^7-37 a^3 z^7-14 a z^7+5 z^7 a^{-1} +5 a^8 z^6-25 a^6 z^6-73 a^4 z^6-67 a^2 z^6+z^6 a^{-2} -23 z^6+a^9 z^5-14 a^7 z^5-17 a^5 z^5+2 a^3 z^5-4 a z^5-8 z^5 a^{-1} -3 a^8 z^4+14 a^6 z^4+51 a^4 z^4+51 a^2 z^4-z^4 a^{-2} +16 z^4+5 a^7 z^3+10 a^5 z^3+8 a^3 z^3+6 a z^3+3 z^3 a^{-1} -4 a^6 z^2-12 a^4 z^2-12 a^2 z^2-4 z^2-a^3 z-a z+a^4+a^2+1+2 a^3 z^{-1} +2 a z^{-1} -a^4 z^{-2} -2 a^2 z^{-2} - z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



