L10n8
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n8's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X17,1,18,4 X9,14,10,15 X3849 X5,11,6,10 X11,5,12,20 X13,19,14,18 X19,13,20,12 X2,16,3,15 |
| Gauss code | {1, -10, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 9, -8, 4, 10, -2, -3, 8, -9, 7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 (u-1) (v-1)}{\sqrt{u} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{9/2}+q^{7/2}-\frac{1}{q^{7/2}}-2 q^{5/2}+\frac{1}{q^{5/2}}+3 q^{3/2}-\frac{2}{q^{3/2}}-3 \sqrt{q}+\frac{2}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^3+a^3 z^{-1} -z^3 a-2 z a-a z^{-1} -z^3 a^{-1} -z a^{-1} - a^{-1} z^{-1} +2 z a^{-3} +2 a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-5} -3 z a^{-5} + a^{-5} z^{-1} +z^4 a^{-4} -2 z^2 a^{-4} + a^{-4} +z^7 a^{-3} +a^3 z^5-6 z^5 a^{-3} -4 a^3 z^3+14 z^3 a^{-3} +3 a^3 z-11 z a^{-3} -a^3 z^{-1} +2 a^{-3} z^{-1} +z^8 a^{-2} +a^2 z^6-6 z^6 a^{-2} -3 a^2 z^4+13 z^4 a^{-2} -9 z^2 a^{-2} +a^2+3 a^{-2} +a z^7+2 z^7 a^{-1} -3 a z^5-10 z^5 a^{-1} +17 z^3 a^{-1} +3 a z-8 z a^{-1} -a z^{-1} + a^{-1} z^{-1} +z^8-5 z^6+9 z^4-7 z^2+2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



