L10n39
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n39's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X14,10,15,9 X16,12,17,11 X10,16,11,15 X17,5,18,20 X7,19,8,18 X19,9,20,8 X2536 X4,14,1,13 |
| Gauss code | {1, -9, 2, -10}, {9, -1, -7, 8, 3, -5, 4, -2, 10, -3, 5, -4, -6, 7, -8, 6} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2-t(2)+1\right) \left(t(2)^2+t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -4 q^{9/2}+3 q^{7/2}-4 q^{5/2}+q^{3/2}-q^{17/2}+3 q^{15/2}-3 q^{13/2}+4 q^{11/2}-\sqrt{q} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{-9} - a^{-9} z^{-1} +z^5 a^{-7} +5 z^3 a^{-7} +8 z a^{-7} +5 a^{-7} z^{-1} -z^7 a^{-5} -6 z^5 a^{-5} -13 z^3 a^{-5} -15 z a^{-5} -8 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +8 z a^{-3} +4 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -5 z^7 a^{-5} -4 z^7 a^{-7} +3 z^6 a^{-4} -2 z^6 a^{-6} -5 z^6 a^{-8} +6 z^5 a^{-3} +24 z^5 a^{-5} +16 z^5 a^{-7} -2 z^5 a^{-9} +3 z^4 a^{-4} +23 z^4 a^{-6} +20 z^4 a^{-8} -13 z^3 a^{-3} -35 z^3 a^{-5} -18 z^3 a^{-7} +4 z^3 a^{-9} -13 z^2 a^{-4} -33 z^2 a^{-6} -23 z^2 a^{-8} -3 z^2 a^{-10} +12 z a^{-3} +23 z a^{-5} +11 z a^{-7} -z a^{-9} -z a^{-11} +8 a^{-4} +14 a^{-6} +9 a^{-8} +2 a^{-10} -4 a^{-3} z^{-1} -8 a^{-5} z^{-1} -5 a^{-7} z^{-1} - a^{-9} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



