L11a394
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a394's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X22,16,9,15 X18,12,19,11 X14,20,15,19 X20,14,21,13 X12,22,13,21 X8,18,5,17 X16,8,17,7 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 9, -8}, {11, -2, 4, -7, 6, -5, 3, -9, 8, -4, 5, -6, 7, -3} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-2 t(1) t(3)^3+2 t(1) t(2) t(3)^3-4 t(2) t(3)^3+2 t(3)^3+5 t(1) t(3)^2-3 t(1) t(2) t(3)^2+6 t(2) t(3)^2-3 t(3)^2-6 t(1) t(3)+3 t(1) t(2) t(3)-5 t(2) t(3)+3 t(3)+4 t(1)-2 t(1) t(2)+2 t(2)-2}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^8+3 q^7-7 q^6+11 q^5-16 q^4+18 q^3+ q^{-3} -16 q^2-2 q^{-2} +16 q+7 q^{-1} -10 }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^4 a^{-6} -2 z^2 a^{-6} - a^{-6} z^{-2} -2 a^{-6} +z^6 a^{-4} +3 z^4 a^{-4} +6 z^2 a^{-4} +3 a^{-4} z^{-2} +6 a^{-4} +z^6 a^{-2} +z^4 a^{-2} +a^2 z^2-2 z^2 a^{-2} +a^2 z^{-2} -2 a^{-2} z^{-2} +2 a^2-3 a^{-2} -2 z^4-4 z^2- z^{-2} -3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^{-9} -2 z^3 a^{-9} +3 z^6 a^{-8} -5 z^4 a^{-8} +6 z^7 a^{-7} -14 z^5 a^{-7} +14 z^3 a^{-7} -7 z a^{-7} +2 a^{-7} z^{-1} +7 z^8 a^{-6} -16 z^6 a^{-6} +17 z^4 a^{-6} -5 z^2 a^{-6} - a^{-6} z^{-2} + a^{-6} +4 z^9 a^{-5} +z^7 a^{-5} -21 z^5 a^{-5} +40 z^3 a^{-5} -27 z a^{-5} +8 a^{-5} z^{-1} +z^{10} a^{-4} +10 z^8 a^{-4} -25 z^6 a^{-4} +23 z^4 a^{-4} -9 z^2 a^{-4} -3 a^{-4} z^{-2} +5 a^{-4} +6 z^9 a^{-3} -2 z^7 a^{-3} -23 z^5 a^{-3} +43 z^3 a^{-3} -34 z a^{-3} +10 a^{-3} z^{-1} +z^{10} a^{-2} +6 z^8 a^{-2} +a^2 z^6-11 z^6 a^{-2} -4 a^2 z^4+2 z^4 a^{-2} +6 a^2 z^2-4 z^2 a^{-2} +a^2 z^{-2} -2 a^{-2} z^{-2} -4 a^2+4 a^{-2} +2 z^9 a^{-1} +2 a z^7+5 z^7 a^{-1} -4 a z^5-21 z^5 a^{-1} +19 z^3 a^{-1} +4 a z-10 z a^{-1} -2 a z^{-1} +2 a^{-1} z^{-1} +3 z^8-4 z^6-3 z^4+6 z^2+ z^{-2} -3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



