L11n89
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n89's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X7,16,8,17 X17,22,18,5 X9,15,10,14 X19,10,20,11 X21,9,22,8 X13,18,14,19 X15,21,16,20 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -3, 7, -5, 6, 11, -2, -8, 5, -9, 3, -4, 8, -6, 9, -7, 4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1) t(2)^5-3 t(1) t(2)^4-t(2)^4+2 t(1) t(2)^3+2 t(2)^3+2 t(1) t(2)^2+2 t(2)^2-t(1) t(2)-3 t(2)+1}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{3/2}-3 \sqrt{q}+\frac{3}{\sqrt{q}}-\frac{4}{q^{3/2}}+\frac{3}{q^{5/2}}-\frac{2}{q^{7/2}}+\frac{1}{q^{9/2}}-\frac{2}{q^{13/2}}+\frac{2}{q^{15/2}}-\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z^{-1} -4 a^7 z-3 a^7 z^{-1} +a^5 z^5+6 a^5 z^3+8 a^5 z+4 a^5 z^{-1} -a^3 z^7-5 a^3 z^5-7 a^3 z^3-6 a^3 z-2 a^3 z^{-1} +a z^5+3 a z^3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^7 a^9+5 z^5 a^9-6 z^3 a^9+4 z a^9-a^9 z^{-1} -2 z^8 a^8+11 z^6 a^8-14 z^4 a^8+6 z^2 a^8-a^8-z^9 a^7+4 z^7 a^7+6 z^5 a^7-24 z^3 a^7+16 z a^7-3 a^7 z^{-1} -3 z^8 a^6+21 z^6 a^6-36 z^4 a^6+18 z^2 a^6-3 a^6-z^9 a^5+3 z^7 a^5+14 z^5 a^5-40 z^3 a^5+25 z a^5-4 a^5 z^{-1} -3 z^8 a^4+18 z^6 a^4-28 z^4 a^4+15 z^2 a^4-2 a^4-5 z^7 a^3+25 z^5 a^3-32 z^3 a^3+15 z a^3-2 a^3 z^{-1} -2 z^8 a^2+7 z^6 a^2-3 z^4 a^2+2 z^2 a^2-a^2-3 z^7 a+12 z^5 a-10 z^3 a+2 z a-z^6+3 z^4-z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



