L11a188
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a188's Link Presentations]
| Planar diagram presentation | X8192 X10,3,11,4 X16,6,17,5 X18,11,19,12 X20,13,21,14 X22,15,7,16 X12,19,13,20 X14,21,15,22 X4,18,5,17 X2738 X6,9,1,10 |
| Gauss code | {1, -10, 2, -9, 3, -11}, {10, -1, 11, -2, 4, -7, 5, -8, 6, -3, 9, -4, 7, -5, 8, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^2 v^5-u^2 v^4+u^2 v^3-u^2 v^2+u^2 v-u^2+u v^6-3 u v^5+3 u v^4-3 u v^3+3 u v^2-3 u v+u-v^6+v^5-v^4+v^3-v^2+v}{u v^3} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{8}{q^{9/2}}+\frac{5}{q^{7/2}}-\frac{4}{q^{5/2}}+\frac{2}{q^{3/2}}+\frac{1}{q^{23/2}}-\frac{2}{q^{21/2}}+\frac{4}{q^{19/2}}-\frac{6}{q^{17/2}}+\frac{8}{q^{15/2}}-\frac{9}{q^{13/2}}+\frac{8}{q^{11/2}}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 \left(-z^5\right)-4 a^9 z^3-4 a^9 z-2 a^9 z^{-1} +a^7 z^7+5 a^7 z^5+9 a^7 z^3+10 a^7 z+5 a^7 z^{-1} +a^5 z^7+4 a^5 z^5+2 a^5 z^3-4 a^5 z-3 a^5 z^{-1} -a^3 z^5-4 a^3 z^3-3 a^3 z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{14} z^4-2 a^{14} z^2+2 a^{13} z^5-3 a^{13} z^3+3 a^{12} z^6-6 a^{12} z^4+5 a^{12} z^2-a^{12}+3 a^{11} z^7-6 a^{11} z^5+6 a^{11} z^3+3 a^{10} z^8-8 a^{10} z^6+10 a^{10} z^4-2 a^{10} z^2+3 a^9 z^9-13 a^9 z^7+28 a^9 z^5-28 a^9 z^3+12 a^9 z-2 a^9 z^{-1} +a^8 z^{10}-11 a^8 z^6+25 a^8 z^4-22 a^8 z^2+5 a^8+5 a^7 z^9-25 a^7 z^7+50 a^7 z^5-53 a^7 z^3+25 a^7 z-5 a^7 z^{-1} +a^6 z^{10}-a^6 z^8-9 a^6 z^6+18 a^6 z^4-15 a^6 z^2+5 a^6+2 a^5 z^9-8 a^5 z^7+9 a^5 z^5-9 a^5 z^3+10 a^5 z-3 a^5 z^{-1} +2 a^4 z^8-9 a^4 z^6+10 a^4 z^4-2 a^4 z^2+a^3 z^7-5 a^3 z^5+7 a^3 z^3-3 a^3 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



