L11n315
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n315's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X7,17,8,16 X9,20,10,21 X11,18,12,19 X19,22,20,11 X15,9,16,8 X21,10,22,5 X17,14,18,15 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -3, 7, -4, 8}, {-5, -2, 11, 9, -7, 3, -9, 5, -6, 4, -8, 6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1) t(2)^2-t(1) t(3) t(2)^2-t(3) t(2)^2+t(2)^2+t(1) t(3)^2 t(2)+t(3)^2 t(2)-t(1) t(2)-t(1) t(3) t(2)+t(3) t(2)-t(2)-t(1) t(3)^2-t(3)^2+t(1) t(3)+t(3)}{\sqrt{t(1)} t(2) t(3)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-7} +2 q^{-6} -2 q^{-5} +2 q^{-4} +q^3- q^{-3} -q^2+ q^{-2} +2 q+ q^{-1} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^6 \left(-z^2\right)-a^6+a^4 z^4+3 a^4 z^2+2 a^4+a^2 z^{-2} +z^2 a^{-2} + a^{-2} z^{-2} +a^2+2 a^{-2} -z^4-4 z^2-2 z^{-2} -4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^5 z^9+a^3 z^9+2 a^6 z^8+3 a^4 z^8+a^2 z^8+a^7 z^7-4 a^5 z^7-6 a^3 z^7+z^7 a^{-1} -11 a^6 z^6-19 a^4 z^6-7 a^2 z^6+z^6 a^{-2} +2 z^6-5 a^7 z^5-a^5 z^5+8 a^3 z^5-4 z^5 a^{-1} +16 a^6 z^4+33 a^4 z^4+11 a^2 z^4-5 z^4 a^{-2} -11 z^4+6 a^7 z^3+9 a^5 z^3-3 a^3 z^3-5 a z^3+z^3 a^{-1} -8 a^6 z^2-20 a^4 z^2-5 a^2 z^2+7 z^2 a^{-2} +14 z^2-2 a^7 z-4 a^5 z+6 a z+4 z a^{-1} +2 a^6+4 a^4-2 a^2-4 a^{-2} -7-2 a z^{-1} -2 a^{-1} z^{-1} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



