L10n74
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n74's Link Presentations]
| Planar diagram presentation | X6172 X5,14,6,15 X3849 X15,2,16,3 X16,7,17,8 X9,18,10,19 X4,17,1,18 X19,12,20,5 X11,20,12,13 X13,10,14,11 |
| Gauss code | {1, 4, -3, -7}, {-2, -1, 5, 3, -6, 10, -9, 8}, {-10, 2, -4, -5, 7, 6, -8, 9} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v^3 w^2+u v^2 w^3-u v^2 w^2+v w-v-w}{\sqrt{u} v^{3/2} w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-3} - q^{-4} +2 q^{-5} - q^{-6} +2 q^{-7} -2 q^{-8} +2 q^{-9} + q^{-11} }[/math] (db) |
| Signature | -6 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{12} z^{-2} +a^{12}-z^4 a^{10}-5 z^2 a^{10}-2 a^{10} z^{-2} -5 a^{10}+z^6 a^8+5 z^4 a^8+6 z^2 a^8+a^8 z^{-2} +2 a^8+z^6 a^6+5 z^4 a^6+6 z^2 a^6+2 a^6 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{14} z^2-2 a^{14}+a^{13} z+a^{12} z^4-3 a^{12} z^2-a^{12} z^{-2} +3 a^{12}+a^{11} z^7-6 a^{11} z^5+12 a^{11} z^3-8 a^{11} z+2 a^{11} z^{-1} +a^{10} z^8-6 a^{10} z^6+13 a^{10} z^4-15 a^{10} z^2-2 a^{10} z^{-2} +9 a^{10}+2 a^9 z^7-10 a^9 z^5+14 a^9 z^3-8 a^9 z+2 a^9 z^{-1} +a^8 z^8-5 a^8 z^6+7 a^8 z^4-5 a^8 z^2-a^8 z^{-2} +3 a^8+a^7 z^7-4 a^7 z^5+2 a^7 z^3+a^7 z+a^6 z^6-5 a^6 z^4+6 a^6 z^2-2 a^6 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



