L10a96
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a96's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X2,11,3,12 X12,3,13,4 X4,9,5,10 X14,5,15,6 X16,19,17,20 X18,7,19,8 X6,17,7,18 X20,15,9,16 X8,13,1,14 |
| Gauss code | {1, -2, 3, -4, 5, -8, 7, -10}, {4, -1, 2, -3, 10, -5, 9, -6, 8, -7, 6, -9} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u^3 v^2-u^3 v+2 u^2 v^3-5 u^2 v^2+5 u^2 v-u^2-u v^3+5 u v^2-5 u v+2 u-v^2+2 v}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{5/2}}+\frac{2}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{7}{q^{11/2}}-\frac{10}{q^{13/2}}+\frac{11}{q^{15/2}}-\frac{10}{q^{17/2}}+\frac{8}{q^{19/2}}-\frac{6}{q^{21/2}}+\frac{3}{q^{23/2}}-\frac{1}{q^{25/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{11}+z a^{11}-z^5 a^9-z^3 a^9+2 z a^9+a^9 z^{-1} -2 z^5 a^7-6 z^3 a^7-5 z a^7-a^7 z^{-1} -z^5 a^5-3 z^3 a^5-2 z a^5 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{15} z^5-2 a^{15} z^3+a^{15} z+3 a^{14} z^6-6 a^{14} z^4+2 a^{14} z^2+4 a^{13} z^7-7 a^{13} z^5+2 a^{13} z^3-a^{13} z+3 a^{12} z^8-3 a^{12} z^6-a^{12} z^2+a^{11} z^9+4 a^{11} z^7-8 a^{11} z^5+3 a^{11} z^3+a^{11} z+5 a^{10} z^8-8 a^{10} z^6+5 a^{10} z^4+a^{10} z^2+a^9 z^9+3 a^9 z^7-8 a^9 z^5+10 a^9 z^3-5 a^9 z+a^9 z^{-1} +2 a^8 z^8-5 a^8 z^4+5 a^8 z^2-a^8+3 a^7 z^7-7 a^7 z^5+8 a^7 z^3-6 a^7 z+a^7 z^{-1} +2 a^6 z^6-4 a^6 z^4+a^6 z^2+a^5 z^5-3 a^5 z^3+2 a^5 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



