L11n165
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n165's Link Presentations]
| Planar diagram presentation | X8192 X10,3,11,4 X15,20,16,21 X14,5,15,6 X4,13,5,14 X17,22,18,7 X21,16,22,17 X19,12,20,13 X11,18,12,19 X2738 X6,9,1,10 |
| Gauss code | {1, -10, 2, -5, 4, -11}, {10, -1, 11, -2, -9, 8, 5, -4, -3, 7, -6, 9, -8, 3, -7, 6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^2 v^5-u^2 v^3+u^2 v^2+u v^6-u v^5+u v^3-u v+u+v^4-v^3+v}{u v^3} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}+\frac{1}{q^{27/2}}-\frac{1}{q^{25/2}}+\frac{1}{q^{23/2}}-\frac{1}{q^{21/2}}-\frac{1}{q^{15/2}}+\frac{1}{q^{13/2}}-\frac{2}{q^{11/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -2 z a^{13}-2 a^{13} z^{-1} +z^5 a^{11}+7 z^3 a^{11}+11 z a^{11}+5 a^{11} z^{-1} -z^7 a^9-6 z^5 a^9-10 z^3 a^9-7 z a^9-3 a^9 z^{-1} -z^7 a^7-6 z^5 a^7-10 z^3 a^7-5 z a^7 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{16} z^6-5 a^{16} z^4+6 a^{16} z^2-a^{16}+a^{15} z^7-5 a^{15} z^5+6 a^{15} z^3-2 a^{15} z+a^{14} z^6-5 a^{14} z^4+4 a^{14} z^2-3 a^{13} z^3+4 a^{13} z-2 a^{13} z^{-1} +a^{12} z^8-8 a^{12} z^6+19 a^{12} z^4-19 a^{12} z^2+5 a^{12}+a^{11} z^9-8 a^{11} z^7+22 a^{11} z^5-31 a^{11} z^3+21 a^{11} z-5 a^{11} z^{-1} +2 a^{10} z^8-13 a^{10} z^6+24 a^{10} z^4-17 a^{10} z^2+5 a^{10}+a^9 z^9-6 a^9 z^7+11 a^9 z^5-12 a^9 z^3+10 a^9 z-3 a^9 z^{-1} +a^8 z^8-5 a^8 z^6+5 a^8 z^4+a^7 z^7-6 a^7 z^5+10 a^7 z^3-5 a^7 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



