L11n16
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n16's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X5,12,6,13 X3849 X9,16,10,17 X11,20,12,21 X17,22,18,5 X21,18,22,19 X19,10,20,11 X13,2,14,3 |
| Gauss code | {1, 11, -5, -3}, {-4, -1, 2, 5, -6, 10, -7, 4, -11, -2, 3, 6, -8, 9, -10, 7, -9, 8} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v^5-2 u v^4+u v^3+v^2-2 v+2}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{7/2}}+\frac{1}{q^{9/2}}-\frac{3}{q^{11/2}}+\frac{2}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{3}{q^{17/2}}-\frac{3}{q^{19/2}}+\frac{2}{q^{21/2}}-\frac{1}{q^{23/2}}+\frac{1}{q^{25/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{13}-a^{13} z^{-1} +z^5 a^{11}+5 z^3 a^{11}+5 z a^{11}+a^{11} z^{-1} -z^7 a^9-5 z^5 a^9-5 z^3 a^9+2 z a^9+2 a^9 z^{-1} -z^7 a^7-6 z^5 a^7-11 z^3 a^7-8 z a^7-2 a^7 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^2 a^{16}+a^{16}-z^3 a^{15}+z a^{15}-z^4 a^{14}+z^2 a^{14}-z^7 a^{13}+4 z^5 a^{13}-4 z^3 a^{13}+a^{13} z^{-1} -2 z^8 a^{12}+11 z^6 a^{12}-19 z^4 a^{12}+13 z^2 a^{12}-3 a^{12}-z^9 a^{11}+4 z^7 a^{11}-3 z^5 a^{11}+2 z^3 a^{11}-3 z a^{11}+a^{11} z^{-1} -3 z^8 a^{10}+15 z^6 a^{10}-19 z^4 a^{10}+6 z^2 a^{10}-z^9 a^9+4 z^7 a^9-z^5 a^9-6 z^3 a^9+6 z a^9-2 a^9 z^{-1} -z^8 a^8+4 z^6 a^8-z^4 a^8-5 z^2 a^8+3 a^8-z^7 a^7+6 z^5 a^7-11 z^3 a^7+8 z a^7-2 a^7 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



