L11n93
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n93's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X16,8,17,7 X11,20,12,21 X17,22,18,5 X21,18,22,19 X19,10,20,11 X14,10,15,9 X8,16,9,15 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 8, 7, -4, -2, 11, -8, 9, -3, -5, 6, -7, 4, -6, 5} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-3 t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-\frac{1}{q^{9/2}}-3 q^{7/2}+\frac{4}{q^{7/2}}+5 q^{5/2}-\frac{7}{q^{5/2}}-8 q^{3/2}+\frac{8}{q^{3/2}}+9 \sqrt{q}-\frac{10}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^3 z^3+z^3 a^{-3} +z a^{-3} -a z^5-z^5 a^{-1} -a z^3-2 z^3 a^{-1} +a z-2 z a^{-1} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a z^9-z^9 a^{-1} -2 a^2 z^8-3 z^8 a^{-2} -5 z^8-a^3 z^7-2 a z^7-4 z^7 a^{-1} -3 z^7 a^{-3} +2 a^2 z^6+7 z^6 a^{-2} -z^6 a^{-4} +10 z^6-3 a^3 z^5+4 a z^5+17 z^5 a^{-1} +10 z^5 a^{-3} -4 a^4 z^4-4 a^2 z^4-z^4 a^{-2} +3 z^4 a^{-4} -4 z^4-a^5 z^3+2 a^3 z^3-a z^3-13 z^3 a^{-1} -9 z^3 a^{-3} +a^4 z^2+2 a^2 z^2-2 z^2 a^{-2} -2 z^2 a^{-4} +z^2+2 a z+4 z a^{-1} +2 z a^{-3} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



