L11n343
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n343's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X11,19,12,18 X7,14,8,15 X13,8,14,9 X15,13,16,22 X17,21,18,20 X21,17,22,16 X19,5,20,12 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -4, 5, 11, -2, -3, 9}, {-5, 4, -6, 8, -7, 3, -9, 7, -8, 6} |
| A Braid Representative | |||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(v-1) (w-1) \left(u v-2 u+2 v^2-v\right)}{\sqrt{u} v^{3/2} \sqrt{w}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^3+5 q^2-6 q+8-8 q^{-1} +8 q^{-2} -5 q^{-3} +4 q^{-4} - q^{-5} + q^{-6} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^6 z^{-2} +a^6-2 z^2 a^4-2 a^4 z^{-2} -3 a^4+z^4 a^2+a^2 z^{-2} +2 z^4+4 z^2+3-2 z^2 a^{-2} - a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^3 z^9+a z^9+a^4 z^8+4 a^2 z^8+3 z^8+a^5 z^7-2 a^3 z^7+3 z^7 a^{-1} +a^6 z^6-12 a^2 z^6+z^6 a^{-2} -10 z^6-2 a^5 z^5+4 a^3 z^5-6 z^5 a^{-1} -5 a^6 z^4-9 a^4 z^4+15 a^2 z^4+4 z^4 a^{-2} +23 z^4-3 a^5 z^3-10 a^3 z^3-a z^3+9 z^3 a^{-1} +3 z^3 a^{-3} +8 a^6 z^2+13 a^4 z^2-8 a^2 z^2-7 z^2 a^{-2} -20 z^2+6 a^5 z+8 a^3 z-4 z a^{-1} -2 z a^{-3} -5 a^6-8 a^4-a^2+2 a^{-2} +5-2 a^5 z^{-1} -2 a^3 z^{-1} +a^6 z^{-2} +2 a^4 z^{-2} +a^2 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



