L11a97
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a97's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X20,17,21,18 X18,13,19,14 X14,19,15,20 X4,21,1,22 X10,5,11,6 X12,3,13,4 X22,11,5,12 X2,9,3,10 X8,15,9,16 |
| Gauss code | {1, -10, 8, -6}, {7, -1, 2, -11, 10, -7, 9, -8, 4, -5, 11, -2, 3, -4, 5, -3, 6, -9} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(2)^5+6 t(1) t(2)^4-6 t(2)^4-13 t(1) t(2)^3+13 t(2)^3+13 t(1) t(2)^2-13 t(2)^2-6 t(1) t(2)+6 t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{5/2}}+\frac{4}{q^{7/2}}-\frac{11}{q^{9/2}}+\frac{16}{q^{11/2}}-\frac{23}{q^{13/2}}+\frac{25}{q^{15/2}}-\frac{25}{q^{17/2}}+\frac{22}{q^{19/2}}-\frac{15}{q^{21/2}}+\frac{9}{q^{23/2}}-\frac{4}{q^{25/2}}+\frac{1}{q^{27/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{13}+3 z^3 a^{11}+2 z a^{11}-2 a^{11} z^{-1} -2 z^5 a^9+7 z a^9+5 a^9 z^{-1} -4 z^5 a^7-11 z^3 a^7-10 z a^7-3 a^7 z^{-1} -z^5 a^5-z^3 a^5 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{16}+2 z^4 a^{16}-z^2 a^{16}-4 z^7 a^{15}+9 z^5 a^{15}-6 z^3 a^{15}+z a^{15}-7 z^8 a^{14}+15 z^6 a^{14}-11 z^4 a^{14}+4 z^2 a^{14}-a^{14}-6 z^9 a^{13}+3 z^7 a^{13}+14 z^5 a^{13}-13 z^3 a^{13}+2 z a^{13}-2 z^{10} a^{12}-17 z^8 a^{12}+48 z^6 a^{12}-41 z^4 a^{12}+14 z^2 a^{12}-14 z^9 a^{11}+15 z^7 a^{11}+12 z^5 a^{11}-14 z^3 a^{11}+4 z a^{11}-2 a^{11} z^{-1} -2 z^{10} a^{10}-22 z^8 a^{10}+52 z^6 a^{10}-34 z^4 a^{10}+2 z^2 a^{10}+5 a^{10}-8 z^9 a^9-2 z^7 a^9+25 z^5 a^9-24 z^3 a^9+13 z a^9-5 a^9 z^{-1} -12 z^8 a^8+16 z^6 a^8-3 z^4 a^8-7 z^2 a^8+5 a^8-10 z^7 a^7+17 z^5 a^7-16 z^3 a^7+10 z a^7-3 a^7 z^{-1} -4 z^6 a^6+3 z^4 a^6-z^5 a^5+z^3 a^5 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



