L10a15
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a15's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X16,8,17,7 X18,11,19,12 X20,13,5,14 X12,19,13,20 X14,17,15,18 X8,16,9,15 X2536 X4,9,1,10 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -8, 10, -2, 4, -6, 5, -7, 8, -3, 7, -4, 6, -5} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(2)^5+2 t(1) t(2)^4-4 t(2)^4-5 t(1) t(2)^3+5 t(2)^3+5 t(1) t(2)^2-5 t(2)^2-4 t(1) t(2)+2 t(2)+t(1)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\sqrt{q}+\frac{2}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{8}{q^{5/2}}-\frac{11}{q^{7/2}}+\frac{11}{q^{9/2}}-\frac{11}{q^{11/2}}+\frac{9}{q^{13/2}}-\frac{6}{q^{15/2}}+\frac{3}{q^{17/2}}-\frac{1}{q^{19/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z+a^9 z^{-1} -3 a^7 z^3-6 a^7 z-3 a^7 z^{-1} +2 a^5 z^5+6 a^5 z^3+7 a^5 z+4 a^5 z^{-1} +a^3 z^5+a^3 z^3-2 a^3 z-2 a^3 z^{-1} -a z^3-2 a z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^5 a^{11}+2 z^3 a^{11}-z a^{11}-3 z^6 a^{10}+6 z^4 a^{10}-3 z^2 a^{10}+a^{10}-4 z^7 a^9+6 z^5 a^9-z^3 a^9+2 z a^9-a^9 z^{-1} -3 z^8 a^8+10 z^4 a^8-9 z^2 a^8+3 a^8-z^9 a^7-7 z^7 a^7+21 z^5 a^7-25 z^3 a^7+14 z a^7-3 a^7 z^{-1} -6 z^8 a^6+10 z^6 a^6-4 z^4 a^6-6 z^2 a^6+3 a^6-z^9 a^5-6 z^7 a^5+21 z^5 a^5-31 z^3 a^5+19 z a^5-4 a^5 z^{-1} -3 z^8 a^4+5 z^6 a^4-4 z^4 a^4-z^2 a^4+2 a^4-3 z^7 a^3+6 z^5 a^3-6 z^3 a^3+6 z a^3-2 a^3 z^{-1} -2 z^6 a^2+4 z^4 a^2-z^2 a^2-z^5 a+3 z^3 a-2 z a }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



