L10a24
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a24's Link Presentations]
| Planar diagram presentation | X6172 X18,7,19,8 X4,19,1,20 X14,12,15,11 X10,4,11,3 X12,5,13,6 X20,13,5,14 X16,9,17,10 X2,16,3,15 X8,17,9,18 |
| Gauss code | {1, -9, 5, -3}, {6, -1, 2, -10, 8, -5, 4, -6, 7, -4, 9, -8, 10, -2, 3, -7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 (t(1)-1) (t(2)-1) \left(t(2)^2-3 t(2)+1\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{5/2}-4 q^{3/2}+7 \sqrt{q}-\frac{11}{\sqrt{q}}+\frac{12}{q^{3/2}}-\frac{14}{q^{5/2}}+\frac{12}{q^{7/2}}-\frac{9}{q^{9/2}}+\frac{6}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{1}{q^{15/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 (-z)+2 a^5 z^3+a^5 z-a^5 z^{-1} -a^3 z^5+2 a^3 z+3 a^3 z^{-1} -a z^5-a z^3+z^3 a^{-1} -2 a z-2 a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^8 z^6-3 a^8 z^4+2 a^8 z^2+3 a^7 z^7-9 a^7 z^5+7 a^7 z^3-2 a^7 z+4 a^6 z^8-11 a^6 z^6+9 a^6 z^4-4 a^6 z^2+a^6+2 a^5 z^9+2 a^5 z^7-16 a^5 z^5+14 a^5 z^3-2 a^5 z-a^5 z^{-1} +10 a^4 z^8-26 a^4 z^6+24 a^4 z^4-11 a^4 z^2+3 a^4+2 a^3 z^9+7 a^3 z^7-21 a^3 z^5+12 a^3 z^3+3 a^3 z-3 a^3 z^{-1} +6 a^2 z^8-7 a^2 z^6+4 a^2 z^4+z^4 a^{-2} -5 a^2 z^2+3 a^2+8 a z^7-10 a z^5+4 z^5 a^{-1} +2 a z^3-3 z^3 a^{-1} +3 a z-2 a z^{-1} +7 z^6-7 z^4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



