L10a88
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a88's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,3,13,4 X14,6,15,5 X16,7,17,8 X18,16,19,15 X20,13,9,14 X6,17,7,18 X4,20,5,19 X2,9,3,10 X8,11,1,12 |
| Gauss code | {1, -9, 2, -8, 3, -7, 4, -10}, {9, -1, 10, -2, 6, -3, 5, -4, 7, -5, 8, -6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^3 v^2-2 u^3 v+u^3+u^2 v^3-5 u^2 v^2+7 u^2 v-2 u^2-2 u v^3+7 u v^2-5 u v+u+v^3-2 v^2+v}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{5/2}-4 q^{3/2}+7 \sqrt{q}-\frac{10}{\sqrt{q}}+\frac{12}{q^{3/2}}-\frac{13}{q^{5/2}}+\frac{11}{q^{7/2}}-\frac{9}{q^{9/2}}+\frac{5}{q^{11/2}}-\frac{3}{q^{13/2}}+\frac{1}{q^{15/2}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7+2 z^3 a^5+2 z a^5+a^5 z^{-1} -z^5 a^3-z^3 a^3-2 z a^3-a^3 z^{-1} -z^5 a-z^3 a-z a+z^3 a^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^5 z^9-a^3 z^9-3 a^6 z^8-7 a^4 z^8-4 a^2 z^8-3 a^7 z^7-7 a^5 z^7-11 a^3 z^7-7 a z^7-a^8 z^6+6 a^6 z^6+11 a^4 z^6-3 a^2 z^6-7 z^6+10 a^7 z^5+26 a^5 z^5+27 a^3 z^5+7 a z^5-4 z^5 a^{-1} +3 a^8 z^4+a^4 z^4+13 a^2 z^4-z^4 a^{-2} +8 z^4-10 a^7 z^3-26 a^5 z^3-20 a^3 z^3-a z^3+3 z^3 a^{-1} -2 a^8 z^2-3 a^6 z^2-5 a^4 z^2-6 a^2 z^2-2 z^2+3 a^7 z+10 a^5 z+7 a^3 z+a^4-a^5 z^{-1} -a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



