L10n110

From Knot Atlas
Revision as of 02:29, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10n109.gif

L10n109

L10n111.gif

L10n111

L10n110.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n110 at Knotilus!


Link Presentations

[edit Notes on L10n110's Link Presentations]

Planar diagram presentation X6172 X3,13,4,12 X13,17,14,20 X19,11,20,16 X7,19,8,18 X15,8,16,9 X9,14,10,15 X17,5,18,10 X2536 X11,1,12,4
Gauss code {1, -9, -2, 10}, {-8, 5, -4, 3}, {9, -1, -5, 6, -7, 8}, {-10, 2, -3, 7, -6, 4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L10n110 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{t(1) t(3)^2-t(1) t(2) t(3)^2-t(1) t(4) t(3)^2+t(1) t(2) t(4) t(3)^2+t(4) t(3)^2-t(1) t(4)^2 t(3)-t(2) t(4)^2 t(3)+t(4)^2 t(3)-t(1) t(3)+t(1) t(2) t(3)-t(2) t(3)+2 t(1) t(4) t(3)-2 t(1) t(2) t(4) t(3)+2 t(2) t(4) t(3)-2 t(4) t(3)+t(2) t(4)^2-t(4)^2+t(1) t(2) t(4)-t(2) t(4)+t(4)}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} }[/math] (db)
Jones polynomial [math]\displaystyle{ -6 q^{9/2}+6 q^{7/2}-10 q^{5/2}+7 q^{3/2}-\frac{3}{q^{3/2}}-q^{13/2}+3 q^{11/2}-8 \sqrt{q}+\frac{4}{\sqrt{q}} }[/math] (db)
Signature 1 (db)
HOMFLY-PT polynomial [math]\displaystyle{ -z^3 a^{-5} - a^{-5} z^{-3} -z a^{-5} -2 a^{-5} z^{-1} +z^5 a^{-3} +3 z^3 a^{-3} +3 a^{-3} z^{-3} +7 z a^{-3} +7 a^{-3} z^{-1} -4 z^3 a^{-1} +a z^{-3} -3 a^{-1} z^{-3} +3 a z-9 z a^{-1} +3 a z^{-1} -8 a^{-1} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -2 z^8 a^{-2} -2 z^8 a^{-4} -5 z^7 a^{-1} -9 z^7 a^{-3} -4 z^7 a^{-5} -z^6 a^{-2} -z^6 a^{-4} -3 z^6 a^{-6} -3 z^6+17 z^5 a^{-1} +27 z^5 a^{-3} +9 z^5 a^{-5} -z^5 a^{-7} +11 z^4 a^{-2} +11 z^4 a^{-4} +6 z^4 a^{-6} +6 z^4-6 a z^3-33 z^3 a^{-1} -36 z^3 a^{-3} -7 z^3 a^{-5} +2 z^3 a^{-7} -23 z^2 a^{-2} -13 z^2 a^{-4} -z^2 a^{-6} -11 z^2+11 a z+27 z a^{-1} +25 z a^{-3} +8 z a^{-5} -z a^{-7} +19 a^{-2} +10 a^{-4} +10-5 a z^{-1} -12 a^{-1} z^{-1} -12 a^{-3} z^{-1} -5 a^{-5} z^{-1} -6 a^{-2} z^{-2} -3 a^{-4} z^{-2} -3 z^{-2} +a z^{-3} +3 a^{-1} z^{-3} +3 a^{-3} z^{-3} + a^{-5} z^{-3} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-2-10123456χ
14        11
12       2 -2
10      41 3
8     44  0
6    62   4
4   36    3
2  54     1
0 15      4
-223       -1
-43        3
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=0 }[/math] [math]\displaystyle{ i=2 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n109.gif

L10n109

L10n111.gif

L10n111