L11n148
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n148's Link Presentations]
| Planar diagram presentation | X8192 X9,19,10,18 X6718 X19,7,20,22 X12,5,13,6 X3,10,4,11 X4,15,5,16 X16,12,17,11 X13,21,14,20 X21,15,22,14 X17,2,18,3 |
| Gauss code | {1, 11, -6, -7, 5, -3}, {3, -1, -2, 6, 8, -5, -9, 10, 7, -8, -11, 2, -4, 9, -10, 4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1) t(2)^4+t(2)^4-t(1) t(2)^3+t(1) t(2)^2-t(1) t(2)+t(1)^2+t(1)}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{5/2}-\frac{1}{q^{5/2}}-q^{3/2}+\frac{1}{q^{3/2}}-\frac{1}{q^{11/2}}+\sqrt{q}-\frac{2}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^5+a^5 z^{-1} -z^5 a-5 z^3 a-7 z a-2 a z^{-1} +z^3 a^{-1} +3 z a^{-1} + a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^5 z^7+a z^7+a^2 z^6+z^6+7 a^5 z^5+a^3 z^5-7 a z^5-z^5 a^{-1} +a^4 z^4-6 a^2 z^4-z^4 a^{-2} -8 z^4-14 a^5 z^3-4 a^3 z^3+13 a z^3+3 z^3 a^{-1} -3 a^4 z^2+8 a^2 z^2+3 z^2 a^{-2} +14 z^2+8 a^5 z+2 a^3 z-9 a z-3 z a^{-1} +a^4-3 a^2-2 a^{-2} -5-a^5 z^{-1} +2 a z^{-1} + a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



