L10a84
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a84's Link Presentations]
| Planar diagram presentation | X8192 X14,9,15,10 X4758 X16,6,17,5 X18,16,19,15 X6,18,1,17 X20,11,7,12 X10,19,11,20 X2,14,3,13 X12,4,13,3 |
| Gauss code | {1, -9, 10, -3, 4, -6}, {3, -1, 2, -8, 7, -10, 9, -2, 5, -4, 6, -5, 8, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{t(1)^2 t(2)^4-2 t(1) t(2)^4+t(2)^4-2 t(1)^2 t(2)^3+6 t(1) t(2)^3-3 t(2)^3+3 t(1)^2 t(2)^2-7 t(1) t(2)^2+3 t(2)^2-3 t(1)^2 t(2)+6 t(1) t(2)-2 t(2)+t(1)^2-2 t(1)+1}{t(1) t(2)^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{9/2}-\frac{3}{q^{9/2}}-4 q^{7/2}+\frac{7}{q^{7/2}}+7 q^{5/2}-\frac{11}{q^{5/2}}-11 q^{3/2}+\frac{13}{q^{3/2}}+\frac{1}{q^{11/2}}+13 \sqrt{q}-\frac{15}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^3 z^5-3 a^3 z^3+z^3 a^{-3} -4 a^3 z+z a^{-3} -a^3 z^{-1} +a z^7+5 a z^5-2 z^5 a^{-1} +11 a z^3-6 z^3 a^{-1} +10 a z-6 z a^{-1} +3 a z^{-1} -2 a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 z^4-a^6 z^2+3 a^5 z^5-2 a^5 z^3+6 a^4 z^6+z^6 a^{-4} -7 a^4 z^4-2 z^4 a^{-4} +5 a^4 z^2+z^2 a^{-4} -a^4+8 a^3 z^7+4 z^7 a^{-3} -13 a^3 z^5-11 z^5 a^{-3} +13 a^3 z^3+8 z^3 a^{-3} -6 a^3 z-z a^{-3} +a^3 z^{-1} +6 a^2 z^8+5 z^8 a^{-2} -4 a^2 z^6-11 z^6 a^{-2} -7 a^2 z^4+3 z^4 a^{-2} +10 a^2 z^2+2 z^2 a^{-2} -3 a^2+2 a z^9+2 z^9 a^{-1} +11 a z^7+7 z^7 a^{-1} -35 a z^5-30 z^5 a^{-1} +33 a z^3+26 z^3 a^{-1} -15 a z-10 z a^{-1} +3 a z^{-1} +2 a^{-1} z^{-1} +11 z^8-22 z^6+6 z^4+5 z^2-3} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



