L11a264
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a264's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X12,4,13,3 X22,12,9,11 X14,6,15,5 X2,9,3,10 X4,14,5,13 X20,17,21,18 X8,16,1,15 X6,20,7,19 X18,8,19,7 X16,21,17,22 |
| Gauss code | {1, -5, 2, -6, 4, -9, 10, -8}, {5, -1, 3, -2, 6, -4, 8, -11, 7, -10, 9, -7, 11, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(2)^3 t(1)^3-3 t(2)^2 t(1)^3+2 t(2) t(1)^3-3 t(2)^3 t(1)^2+7 t(2)^2 t(1)^2-5 t(2) t(1)^2+2 t(1)^2+2 t(2)^3 t(1)-5 t(2)^2 t(1)+7 t(2) t(1)-3 t(1)+2 t(2)^2-3 t(2)+1}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{17/2}-3 q^{15/2}+6 q^{13/2}-10 q^{11/2}+12 q^{9/2}-15 q^{7/2}+14 q^{5/2}-12 q^{3/2}+9 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{1}{q^{5/2}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^7 a^{-3} -2 z^5 a^{-1} +4 z^5 a^{-3} -2 z^5 a^{-5} +a z^3-6 z^3 a^{-1} +6 z^3 a^{-3} -6 z^3 a^{-5} +z^3 a^{-7} +2 a z-3 z a^{-1} +5 z a^{-3} -4 z a^{-5} +2 z a^{-7} + a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^{10} a^{-2} -z^{10} a^{-4} -3 z^9 a^{-1} -6 z^9 a^{-3} -3 z^9 a^{-5} -5 z^8 a^{-2} -7 z^8 a^{-4} -5 z^8 a^{-6} -3 z^8-a z^7+8 z^7 a^{-1} +12 z^7 a^{-3} -3 z^7 a^{-5} -6 z^7 a^{-7} +25 z^6 a^{-2} +21 z^6 a^{-4} +3 z^6 a^{-6} -5 z^6 a^{-8} +12 z^6+4 a z^5+4 z^5 a^{-3} +18 z^5 a^{-5} +7 z^5 a^{-7} -3 z^5 a^{-9} -24 z^4 a^{-2} -12 z^4 a^{-4} +4 z^4 a^{-6} +5 z^4 a^{-8} -z^4 a^{-10} -14 z^4-5 a z^3-8 z^3 a^{-1} -13 z^3 a^{-3} -18 z^3 a^{-5} -5 z^3 a^{-7} +3 z^3 a^{-9} +5 z^2 a^{-2} -3 z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} +5 z^2+2 a z+2 z a^{-1} +6 z a^{-3} +9 z a^{-5} +2 z a^{-7} -z a^{-9} + a^{-4} - a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



