L11a264

From Knot Atlas
Revision as of 02:29, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a263.gif

L11a263

L11a265.gif

L11a265

L11a264.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a264 at Knotilus!


Link Presentations

[edit Notes on L11a264's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X22,12,9,11 X14,6,15,5 X2,9,3,10 X4,14,5,13 X20,17,21,18 X8,16,1,15 X6,20,7,19 X18,8,19,7 X16,21,17,22
Gauss code {1, -5, 2, -6, 4, -9, 10, -8}, {5, -1, 3, -2, 6, -4, 8, -11, 7, -10, 9, -7, 11, -3}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L11a264 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{t(2)^3 t(1)^3-3 t(2)^2 t(1)^3+2 t(2) t(1)^3-3 t(2)^3 t(1)^2+7 t(2)^2 t(1)^2-5 t(2) t(1)^2+2 t(1)^2+2 t(2)^3 t(1)-5 t(2)^2 t(1)+7 t(2) t(1)-3 t(1)+2 t(2)^2-3 t(2)+1}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{17/2}-3 q^{15/2}+6 q^{13/2}-10 q^{11/2}+12 q^{9/2}-15 q^{7/2}+14 q^{5/2}-12 q^{3/2}+9 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{3}{q^{3/2}}-\frac{1}{q^{5/2}} }[/math] (db)
Signature 3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z^7 a^{-3} -2 z^5 a^{-1} +4 z^5 a^{-3} -2 z^5 a^{-5} +a z^3-6 z^3 a^{-1} +6 z^3 a^{-3} -6 z^3 a^{-5} +z^3 a^{-7} +2 a z-3 z a^{-1} +5 z a^{-3} -4 z a^{-5} +2 z a^{-7} + a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -z^{10} a^{-2} -z^{10} a^{-4} -3 z^9 a^{-1} -6 z^9 a^{-3} -3 z^9 a^{-5} -5 z^8 a^{-2} -7 z^8 a^{-4} -5 z^8 a^{-6} -3 z^8-a z^7+8 z^7 a^{-1} +12 z^7 a^{-3} -3 z^7 a^{-5} -6 z^7 a^{-7} +25 z^6 a^{-2} +21 z^6 a^{-4} +3 z^6 a^{-6} -5 z^6 a^{-8} +12 z^6+4 a z^5+4 z^5 a^{-3} +18 z^5 a^{-5} +7 z^5 a^{-7} -3 z^5 a^{-9} -24 z^4 a^{-2} -12 z^4 a^{-4} +4 z^4 a^{-6} +5 z^4 a^{-8} -z^4 a^{-10} -14 z^4-5 a z^3-8 z^3 a^{-1} -13 z^3 a^{-3} -18 z^3 a^{-5} -5 z^3 a^{-7} +3 z^3 a^{-9} +5 z^2 a^{-2} -3 z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} +5 z^2+2 a z+2 z a^{-1} +6 z a^{-3} +9 z a^{-5} +2 z a^{-7} -z a^{-9} + a^{-4} - a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          2 2
14         41 -3
12        62  4
10       75   -2
8      85    3
6     67     1
4    68      -2
2   47       3
0  25        -3
-2 14         3
-4 2          -2
-61           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=2 }[/math] [math]\displaystyle{ i=4 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a263.gif

L11a263

L11a265.gif

L11a265