L11n355
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n355's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X18,12,19,11 X7,16,8,17 X15,8,16,9 X20,13,21,14 X22,20,15,19 X12,21,13,22 X14,18,5,17 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {-5, 4, 9, -3, 7, -6, 8, -7}, {10, -1, -4, 5, 11, -2, 3, -8, 6, -9} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(w-1) \left(u v^2 w-u v^2-2 u v w+3 u v+u w-u-v^2 w+v^2+3 v w-2 v-w+1\right)}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 2 q^{-7} -4 q^{-6} +9 q^{-5} -10 q^{-4} +13 q^{-3} -q^2-12 q^{-2} +4 q+10 q^{-1} -7 }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^8 z^{-2} +z^2 a^6-2 a^6 z^{-2} -2 a^6-2 z^4 a^4-2 z^2 a^4+a^4 z^{-2} +a^4+z^6 a^2+3 z^4 a^2+4 z^2 a^2+a^2-z^4-z^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 3 a^8 z^4-6 a^8 z^2-a^8 z^{-2} +4 a^8+a^7 z^7+a^7 z^5+a^7 z^3-5 a^7 z+2 a^7 z^{-1} +2 a^6 z^8-2 a^6 z^6+7 a^6 z^4-10 a^6 z^2-2 a^6 z^{-2} +6 a^6+a^5 z^9+4 a^5 z^7-7 a^5 z^5+7 a^5 z^3-5 a^5 z+2 a^5 z^{-1} +6 a^4 z^8-7 a^4 z^6+2 a^4 z^4-a^4 z^2-a^4 z^{-2} +2 a^4+a^3 z^9+9 a^3 z^7-20 a^3 z^5+11 a^3 z^3+4 a^2 z^8-a^2 z^6-9 a^2 z^4+5 a^2 z^2-a^2+6 a z^7-11 a z^5+z^5 a^{-1} +4 a z^3-z^3 a^{-1} +4 z^6-7 z^4+2 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



