L11n155
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n155's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X7,16,8,17 X13,20,14,21 X15,22,16,7 X6,19,1,20 X18,11,19,12 X12,6,13,5 X21,14,22,15 X4,18,5,17 |
| Gauss code | {1, -2, 3, -11, 9, -7}, {-4, -1, 2, -3, 8, -9, -5, 10, -6, 4, 11, -8, 7, 5, -10, 6} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1)^2 t(2)^4-2 t(1) t(2)^4-2 t(1)^2 t(2)^3+4 t(1) t(2)^3-t(2)^3+2 t(1)^2 t(2)^2-5 t(1) t(2)^2+2 t(2)^2-t(1)^2 t(2)+4 t(1) t(2)-2 t(2)-2 t(1)+1}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{2}{q^{5/2}}+\frac{3}{q^{7/2}}-\frac{7}{q^{9/2}}+\frac{8}{q^{11/2}}-\frac{10}{q^{13/2}}+\frac{10}{q^{15/2}}-\frac{8}{q^{17/2}}+\frac{6}{q^{19/2}}-\frac{3}{q^{21/2}}+\frac{1}{q^{23/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^9-3 z^3 a^9-3 z a^9-2 a^9 z^{-1} +z^7 a^7+5 z^5 a^7+10 z^3 a^7+11 z a^7+5 a^7 z^{-1} -2 z^5 a^5-8 z^3 a^5-9 z a^5-3 a^5 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{14} z^4-a^{14} z^2+3 a^{13} z^5-3 a^{13} z^3+5 a^{12} z^6-7 a^{12} z^4+4 a^{12} z^2-a^{12}+5 a^{11} z^7-7 a^{11} z^5+5 a^{11} z^3-a^{11} z+3 a^{10} z^8-a^{10} z^6-3 a^{10} z^4+3 a^{10} z^2+a^9 z^9+3 a^9 z^7-5 a^9 z^5-a^9 z^3+4 a^9 z-2 a^9 z^{-1} +4 a^8 z^8-8 a^8 z^6+9 a^8 z^4-11 a^8 z^2+5 a^8+a^7 z^9-2 a^7 z^7+8 a^7 z^5-19 a^7 z^3+15 a^7 z-5 a^7 z^{-1} +a^6 z^8-2 a^6 z^6+4 a^6 z^4-9 a^6 z^2+5 a^6+3 a^5 z^5-10 a^5 z^3+10 a^5 z-3 a^5 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



