L10n38
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n38's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X16,13,17,14 X14,9,15,10 X10,15,11,16 X17,5,18,20 X7,19,8,18 X19,9,20,8 X2536 X4,11,1,12 |
| Gauss code | {1, -9, 2, -10}, {9, -1, -7, 8, 4, -5, 10, -2, 3, -4, 5, -3, -6, 7, -8, 6} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)+t(2)) \left(t(2)^2-t(2)+1\right)^2}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{6}{q^{9/2}}+\frac{5}{q^{7/2}}-\frac{7}{q^{5/2}}+\frac{5}{q^{3/2}}+\frac{1}{q^{15/2}}-\frac{2}{q^{13/2}}+\frac{4}{q^{11/2}}+2 \sqrt{q}-\frac{4}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^7-2 a^7 z^{-1} +3 z^3 a^5+9 z a^5+7 a^5 z^{-1} -2 z^5 a^3-9 z^3 a^3-14 z a^3-7 a^3 z^{-1} +2 z^3 a+4 z a+2 a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^8+4 z^4 a^8-5 z^2 a^8+2 a^8-2 z^7 a^7+7 z^5 a^7-7 z^3 a^7+4 z a^7-2 a^7 z^{-1} -z^8 a^6-2 z^6 a^6+17 z^4 a^6-20 z^2 a^6+8 a^6-6 z^7 a^5+20 z^5 a^5-22 z^3 a^5+17 z a^5-7 a^5 z^{-1} -z^8 a^4-5 z^6 a^4+24 z^4 a^4-29 z^2 a^4+13 a^4-4 z^7 a^3+12 z^5 a^3-18 z^3 a^3+16 z a^3-7 a^3 z^{-1} -4 z^6 a^2+11 z^4 a^2-17 z^2 a^2+8 a^2-z^5 a-3 z^3 a+3 z a-2 a z^{-1} -3 z^2+2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



