L11n404

From Knot Atlas
Revision as of 02:33, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n403.gif

L11n403

L11n405.gif

L11n405

L11n404.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n404 at Knotilus!


Link Presentations

[edit Notes on L11n404's Link Presentations]

Planar diagram presentation X6172 X14,7,15,8 X16,9,17,10 X8,15,9,16 X4,17,1,18 X11,22,12,19 X10,4,11,3 X5,21,6,20 X21,5,22,18 X19,12,20,13 X2,14,3,13
Gauss code {1, -11, 7, -5}, {-10, 8, -9, 6}, {-8, -1, 2, -4, 3, -7, -6, 10, 11, -2, 4, -3, 5, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation L11n404 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ 0 }[/math] (db)
Jones polynomial [math]\displaystyle{ q^2-q+2+2 q^{-2} + q^{-3} - q^{-4} + q^{-5} - q^{-6} + q^{-7} - q^{-8} }[/math] (db)
Signature -3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ a^6 \left(-z^4\right)-4 a^6 z^2-a^6 z^{-2} -4 a^6+a^4 z^6+7 a^4 z^4+16 a^4 z^2+4 a^4 z^{-2} +13 a^4-a^2 z^6-7 a^2 z^4-16 a^2 z^2-5 a^2 z^{-2} -14 a^2+z^4+4 z^2+2 z^{-2} +5 }[/math] (db)
Kauffman polynomial [math]\displaystyle{ z^5 a^9-4 z^3 a^9+2 z a^9+z^6 a^8-4 z^4 a^8+2 z^2 a^8+z^7 a^7-5 z^5 a^7+6 z^3 a^7-4 z a^7+a^7 z^{-1} +z^8 a^6-6 z^6 a^6+10 z^4 a^6-10 z^2 a^6-a^6 z^{-2} +7 a^6+3 z^7 a^5-21 z^5 a^5+40 z^3 a^5-25 z a^5+5 a^5 z^{-1} +3 z^8 a^4-22 z^6 a^4+50 z^4 a^4-49 z^2 a^4-4 a^4 z^{-2} +22 a^4+z^9 a^3-4 z^7 a^3-7 z^5 a^3+34 z^3 a^3-31 z a^3+9 a^3 z^{-1} +3 z^8 a^2-22 z^6 a^2+52 z^4 a^2-53 z^2 a^2-5 a^2 z^{-2} +23 a^2+z^9 a-6 z^7 a+8 z^5 a+4 z^3 a-12 z a+5 a z^{-1} +z^8-7 z^6+16 z^4-16 z^2-2 z^{-2} +9 }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
5           11
3            0
1         21 1
-1       31   2
-3      152   2
-5     322    3
-7    121     0
-9   242      0
-11   11       0
-13 121        0
-15            0
-171           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n403.gif

L11n403

L11n405.gif

L11n405