L11a107
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a107's Link Presentations]
| Planar diagram presentation | X6172 X14,3,15,4 X22,15,5,16 X16,7,17,8 X18,9,19,10 X20,11,21,12 X8,17,9,18 X10,19,11,20 X12,21,13,22 X2536 X4,13,1,14 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -7, 5, -8, 6, -9, 11, -2, 3, -4, 7, -5, 8, -6, 9, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-t(2)^7-2 t(1) t(2)^6+2 t(2)^6+2 t(1) t(2)^5-2 t(2)^5-2 t(1) t(2)^4+2 t(2)^4+2 t(1) t(2)^3-2 t(2)^3-2 t(1) t(2)^2+2 t(2)^2+2 t(1) t(2)-2 t(2)-t(1)}{\sqrt{t(1)} t(2)^{7/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{2}{q^{9/2}}-\frac{1}{q^{7/2}}+\frac{1}{q^{29/2}}-\frac{2}{q^{27/2}}+\frac{4}{q^{25/2}}-\frac{5}{q^{23/2}}+\frac{7}{q^{21/2}}-\frac{8}{q^{19/2}}+\frac{7}{q^{17/2}}-\frac{7}{q^{15/2}}+\frac{4}{q^{13/2}}-\frac{4}{q^{11/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^{13}-4 z a^{13}-3 a^{13} z^{-1} +3 z^5 a^{11}+15 z^3 a^{11}+20 z a^{11}+7 a^{11} z^{-1} -2 z^7 a^9-12 z^5 a^9-23 z^3 a^9-17 z a^9-4 a^9 z^{-1} -z^7 a^7-5 z^5 a^7-6 z^3 a^7-z a^7 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{18} z^4-2 a^{18} z^2+a^{18}+2 a^{17} z^5-3 a^{17} z^3+2 a^{16} z^6-a^{16} z^4-2 a^{16} z^2+2 a^{15} z^7-2 a^{15} z^5+a^{15} z^3+2 a^{14} z^8-4 a^{14} z^6+4 a^{14} z^4+2 a^{13} z^9-7 a^{13} z^7+12 a^{13} z^5-12 a^{13} z^3+10 a^{13} z-3 a^{13} z^{-1} +a^{12} z^{10}-a^{12} z^8-9 a^{12} z^6+24 a^{12} z^4-22 a^{12} z^2+7 a^{12}+5 a^{11} z^9-27 a^{11} z^7+55 a^{11} z^5-57 a^{11} z^3+29 a^{11} z-7 a^{11} z^{-1} +a^{10} z^{10}-a^{10} z^8-12 a^{10} z^6+27 a^{10} z^4-23 a^{10} z^2+7 a^{10}+3 a^9 z^9-17 a^9 z^7+34 a^9 z^5-35 a^9 z^3+18 a^9 z-4 a^9 z^{-1} +2 a^8 z^8-9 a^8 z^6+9 a^8 z^4-a^8 z^2+a^7 z^7-5 a^7 z^5+6 a^7 z^3-a^7 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



