L10a53
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a53's Link Presentations]
| Planar diagram presentation | X8192 X18,9,19,10 X6718 X20,14,7,13 X12,5,13,6 X10,4,11,3 X4,15,5,16 X16,12,17,11 X14,20,15,19 X2,18,3,17 |
| Gauss code | {1, -10, 6, -7, 5, -3}, {3, -1, 2, -6, 8, -5, 4, -9, 7, -8, 10, -2, 9, -4} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{\left(u v^2-2 u v+u+2 v-1\right) \left(u v^2-2 u v-v^2+2 v-1\right)}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{9/2}-\frac{4}{q^{9/2}}-4 q^{7/2}+\frac{8}{q^{7/2}}+8 q^{5/2}-\frac{13}{q^{5/2}}-12 q^{3/2}+\frac{15}{q^{3/2}}+\frac{1}{q^{11/2}}+15 \sqrt{q}-\frac{17}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^5-2 a^3 z^3+z^3 a^{-3} -a^3 z+z a^{-3} +a^3 z^{-1} +a z^7+4 a z^5-2 z^5 a^{-1} +6 a z^3-5 z^3 a^{-1} +2 a z-3 z a^{-1} -a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^6 z^4+4 a^5 z^5-2 a^5 z^3+8 a^4 z^6+z^6 a^{-4} -7 a^4 z^4-2 z^4 a^{-4} +a^4 z^2+z^2 a^{-4} +11 a^3 z^7+4 z^7 a^{-3} -16 a^3 z^5-10 z^5 a^{-3} +9 a^3 z^3+7 z^3 a^{-3} -a^3 z-2 z a^{-3} -a^3 z^{-1} +9 a^2 z^8+6 z^8 a^{-2} -11 a^2 z^6-14 z^6 a^{-2} +2 a^2 z^4+7 z^4 a^{-2} +a^2+3 a z^9+3 z^9 a^{-1} +12 a z^7+5 z^7 a^{-1} -39 a z^5-29 z^5 a^{-1} +29 a z^3+25 z^3 a^{-1} -5 a z-6 z a^{-1} -a z^{-1} +15 z^8-34 z^6+19 z^4-2 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



