L11a93

From Knot Atlas
Revision as of 02:34, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a92.gif

L11a92

L11a94.gif

L11a94

L11a93.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a93 at Knotilus!


Link Presentations

[edit Notes on L11a93's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X20,8,21,7 X22,17,5,18 X18,21,19,22 X14,10,15,9 X16,12,17,11 X10,16,11,15 X8,20,9,19 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, 3, -9, 6, -8, 7, -2, 11, -6, 8, -7, 4, -5, 9, -3, 5, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11a93 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) [math]\displaystyle{ \frac{(u-1) (v-1) \left(v^4-4 v^3+3 v^2-4 v+1\right)}{\sqrt{u} v^{5/2}} }[/math] (db)
Jones polynomial [math]\displaystyle{ q^{17/2}-3 q^{15/2}+7 q^{13/2}-12 q^{11/2}+15 q^{9/2}-17 q^{7/2}+16 q^{5/2}-14 q^{3/2}+10 \sqrt{q}-\frac{6}{\sqrt{q}}+\frac{2}{q^{3/2}}-\frac{1}{q^{5/2}} }[/math] (db)
Signature 3 (db)
HOMFLY-PT polynomial [math]\displaystyle{ z^3 a^{-7} +2 z a^{-7} + a^{-7} z^{-1} -2 z^5 a^{-5} -6 z^3 a^{-5} -7 z a^{-5} -4 a^{-5} z^{-1} +z^7 a^{-3} +4 z^5 a^{-3} +8 z^3 a^{-3} +11 z a^{-3} +6 a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-7 z^3 a^{-1} +3 a z-9 z a^{-1} +2 a z^{-1} -5 a^{-1} z^{-1} }[/math] (db)
Kauffman polynomial [math]\displaystyle{ -z^{10} a^{-2} -z^{10} a^{-4} -2 z^9 a^{-1} -6 z^9 a^{-3} -4 z^9 a^{-5} -5 z^8 a^{-2} -11 z^8 a^{-4} -8 z^8 a^{-6} -2 z^8-a z^7+z^7 a^{-1} +4 z^7 a^{-3} -7 z^7 a^{-5} -9 z^7 a^{-7} +20 z^6 a^{-2} +28 z^6 a^{-4} +9 z^6 a^{-6} -6 z^6 a^{-8} +7 z^6+5 a z^5+17 z^5 a^{-1} +31 z^5 a^{-3} +37 z^5 a^{-5} +15 z^5 a^{-7} -3 z^5 a^{-9} -13 z^4 a^{-2} -10 z^4 a^{-4} +3 z^4 a^{-6} +6 z^4 a^{-8} -z^4 a^{-10} -7 z^4-9 a z^3-33 z^3 a^{-1} -48 z^3 a^{-3} -41 z^3 a^{-5} -15 z^3 a^{-7} +2 z^3 a^{-9} -z^2 a^{-2} -6 z^2 a^{-4} -9 z^2 a^{-6} -4 z^2 a^{-8} +z^2 a^{-10} +z^2+7 a z+22 z a^{-1} +29 z a^{-3} +20 z a^{-5} +6 z a^{-7} + a^{-2} +3 a^{-4} +3 a^{-6} + a^{-8} +1-2 a z^{-1} -5 a^{-1} z^{-1} -6 a^{-3} z^{-1} -4 a^{-5} z^{-1} - a^{-7} z^{-1} }[/math] (db)

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          2 2
14         51 -4
12        72  5
10       85   -3
8      97    2
6     78     1
4    79      -2
2   59       4
0  15        -4
-2 15         4
-4 1          -1
-61           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=2 }[/math] [math]\displaystyle{ i=4 }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a92.gif

L11a92

L11a94.gif

L11a94