L10n64

From Knot Atlas
Revision as of 02:36, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10n63.gif

L10n63

L10n65.gif

L10n65

L10n64.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n64 at Knotilus!


Link Presentations

[edit Notes on L10n64's Link Presentations]

Planar diagram presentation X12,1,13,2 X16,7,17,8 X3948 X17,2,18,3 X14,6,15,5 X6,12,7,11 X9,18,10,19 X20,15,11,16 X10,13,1,14 X4,19,5,20
Gauss code {1, 4, -3, -10, 5, -6, 2, 3, -7, -9}, {6, -1, 9, -5, 8, -2, -4, 7, 10, -8}
A Braid Representative
BraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L10n64 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101χ
2        1-1
0       3 3
-2      32 -1
-4     32  1
-6    33   0
-8   33    0
-10  24     2
-12 12      -1
-14 2       2
-161        -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n63.gif

L10n63

L10n65.gif

L10n65