L11n284
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n284's Link Presentations]
| Planar diagram presentation | X6172 X12,6,13,5 X8493 X2,14,3,13 X14,7,15,8 X18,10,19,9 X17,11,18,22 X11,21,12,20 X21,17,22,16 X4,15,1,16 X10,20,5,19 |
| Gauss code | {1, -4, 3, -10}, {2, -1, 5, -3, 6, -11}, {-8, -2, 4, -5, 10, 9, -7, -6, 11, 8, -9, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(3)-1) \left(t(2) t(3)^3+1\right)}{\sqrt{t(1)} t(2) t(3)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^7+3 q^6-4 q^5+6 q^4-4 q^3+6 q^2-3 q- q^{-1} +3 }[/math] (db) |
| Signature | 4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^2 a^{-8} - a^{-8} z^{-2} -z^6 a^{-6} -5 z^4 a^{-6} -5 z^2 a^{-6} +4 a^{-6} z^{-2} +2 a^{-6} +z^8 a^{-4} +6 z^6 a^{-4} +11 z^4 a^{-4} +6 z^2 a^{-4} -5 a^{-4} z^{-2} -5 a^{-4} -z^6 a^{-2} -4 z^4 a^{-2} -2 z^2 a^{-2} +2 a^{-2} z^{-2} +3 a^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 2 z^9 a^{-3} +2 z^9 a^{-5} +3 z^8 a^{-2} +7 z^8 a^{-4} +4 z^8 a^{-6} +z^7 a^{-1} -7 z^7 a^{-3} -6 z^7 a^{-5} +2 z^7 a^{-7} -15 z^6 a^{-2} -35 z^6 a^{-4} -20 z^6 a^{-6} -4 z^5 a^{-1} +z^5 a^{-3} -3 z^5 a^{-5} -8 z^5 a^{-7} +21 z^4 a^{-2} +49 z^4 a^{-4} +29 z^4 a^{-6} +z^4 a^{-8} +3 z^3 a^{-1} +4 z^3 a^{-3} +7 z^3 a^{-5} +6 z^3 a^{-7} -9 z^2 a^{-2} -21 z^2 a^{-4} -14 z^2 a^{-6} -2 z^2 a^{-8} +5 z a^{-3} +9 z a^{-5} +5 z a^{-7} +z a^{-9} -3 a^{-2} -4 a^{-4} -2 a^{-6} -5 a^{-3} z^{-1} -9 a^{-5} z^{-1} -5 a^{-7} z^{-1} - a^{-9} z^{-1} +2 a^{-2} z^{-2} +5 a^{-4} z^{-2} +4 a^{-6} z^{-2} + a^{-8} z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



