L10a74
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a74's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X16,5,17,6 X18,11,19,12 X20,13,7,14 X12,19,13,20 X14,17,15,18 X6718 X4,15,5,16 |
| Gauss code | {1, -2, 3, -10, 4, -9}, {9, -1, 2, -3, 5, -7, 6, -8, 10, -4, 8, -5, 7, -6} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u^2 v^4-2 u^2 v^3+2 u^2 v^2-u^2 v-u v^4+3 u v^3-3 u v^2+3 u v-u-v^3+2 v^2-2 v+2}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{1}{q^{9/2}}-\frac{1}{q^{7/2}}-\frac{1}{q^{27/2}}+\frac{3}{q^{25/2}}-\frac{5}{q^{23/2}}+\frac{7}{q^{21/2}}-\frac{8}{q^{19/2}}+\frac{8}{q^{17/2}}-\frac{7}{q^{15/2}}+\frac{5}{q^{13/2}}-\frac{4}{q^{11/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{11} z^5+3 a^{11} z^3+a^{11} z-a^{11} z^{-1} -a^9 z^7-4 a^9 z^5-2 a^9 z^3+5 a^9 z+3 a^9 z^{-1} -a^7 z^7-6 a^7 z^5-12 a^7 z^3-9 a^7 z-2 a^7 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{17} z^3+3 a^{16} z^4-a^{16} z^2+5 a^{15} z^5-4 a^{15} z^3+a^{15} z+6 a^{14} z^6-8 a^{14} z^4+3 a^{14} z^2+5 a^{13} z^7-7 a^{13} z^5+a^{13} z+3 a^{12} z^8-3 a^{12} z^6-5 a^{12} z^4+3 a^{12} z^2-a^{12}+a^{11} z^9+2 a^{11} z^7-10 a^{11} z^5+4 a^{11} z^3+a^{11} z^{-1} +4 a^{10} z^8-12 a^{10} z^6+5 a^{10} z^4+6 a^{10} z^2-3 a^{10}+a^9 z^9-2 a^9 z^7-4 a^9 z^5+11 a^9 z^3-9 a^9 z+3 a^9 z^{-1} +a^8 z^8-3 a^8 z^6-a^8 z^4+7 a^8 z^2-3 a^8+a^7 z^7-6 a^7 z^5+12 a^7 z^3-9 a^7 z+2 a^7 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



