L11n224
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n224's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X3,12,4,13 X16,9,17,10 X20,12,21,11 X22,15,9,16 X5,14,6,15 X7,18,8,19 X13,4,14,5 X17,6,18,7 X19,8,20,1 X2,21,3,22 |
| Gauss code | {1, -11, -2, 8, -6, 9, -7, 10}, {3, -1, 4, 2, -8, 6, 5, -3, -9, 7, -10, -4, 11, -5} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1)^3 t(2)^3+t(1)^2 t(2)^3-t(1) t(2)^3-t(1)^2 t(2)^2+2 t(1) t(2)^2+2 t(1)^2 t(2)-t(1) t(2)-t(1)^2+t(1)+1}{t(1)^{3/2} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{7/2}}-\frac{2}{q^{13/2}}+\frac{3}{q^{15/2}}-\frac{3}{q^{17/2}}+\frac{3}{q^{19/2}}-\frac{3}{q^{21/2}}+\frac{2}{q^{23/2}}-\frac{1}{q^{25/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^3 a^{11}+z a^{11}+2 z^3 a^9+4 z a^9+a^9 z^{-1} -z^7 a^7-7 z^5 a^7-14 z^3 a^7-9 z a^7-a^7 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{15} z^5-3 a^{15} z^3+2 a^{15} z+2 a^{14} z^6-6 a^{14} z^4+3 a^{14} z^2+a^{13} z^7-a^{13} z^5-3 a^{13} z^3+a^{13} z+2 a^{12} z^6-3 a^{12} z^4-a^{12} z^2+3 a^{11} z^5-6 a^{11} z^3+3 a^{11} z+a^{10} z^4+a^{10} z^2-2 a^9 z^5+8 a^9 z^3-5 a^9 z+a^9 z^{-1} -2 a^8 z^4+5 a^8 z^2-a^8+a^7 z^7-7 a^7 z^5+14 a^7 z^3-9 a^7 z+a^7 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



