L11n347
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n347's Link Presentations]
| Planar diagram presentation | X6172 X3,15,4,14 X11,20,12,21 X7,18,8,19 X17,22,18,13 X16,9,17,10 X10,15,11,16 X19,12,20,5 X21,8,22,9 X2536 X13,1,14,4 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -4, 9, 6, -7, -3, 8}, {-11, 2, 7, -6, -5, 4, -8, 3, -9, 5} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v^2 w^3-u v^2 w^2+u v^2 w-u v^2-u v w+u v+u w^2+v^3 (-w)-v^2 w^3+v^2 w^2+v w^3-v w^2+v w-v}{\sqrt{u} v^{3/2} w^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 1-2 q^{-1} +4 q^{-2} -3 q^{-3} +4 q^{-4} -3 q^{-5} +3 q^{-6} - q^{-7} + q^{-9} }[/math] (db) |
| Signature | -4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^8 z^2+a^8 z^{-2} +2 a^8-2 a^6 z^2-2 a^6 z^{-2} -5 a^6-a^4 z^6-4 a^4 z^4-3 a^4 z^2+a^4 z^{-2} +a^4+a^2 z^4+3 a^2 z^2+2 a^2 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^6-6 a^{10} z^4+8 a^{10} z^2-2 a^{10}-a^9 z^5+2 a^9 z^3+a^9 z-a^8 z^6+4 a^8 z^4-3 a^8 z^2-a^8 z^{-2} +3 a^8+a^7 z^7-5 a^7 z^5+10 a^7 z^3-8 a^7 z+2 a^7 z^{-1} +a^6 z^8-4 a^6 z^6+8 a^6 z^4-13 a^6 z^2-2 a^6 z^{-2} +9 a^6+3 a^5 z^7-11 a^5 z^5+12 a^5 z^3-8 a^5 z+2 a^5 z^{-1} +a^4 z^8-a^4 z^6-6 a^4 z^4+3 a^4 z^2-a^4 z^{-2} +3 a^4+2 a^3 z^7-7 a^3 z^5+4 a^3 z^3+a^3 z+a^2 z^6-4 a^2 z^4+5 a^2 z^2-2 a^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



