L10a78
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a78's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X14,8,15,7 X6,13,1,14 X18,12,19,11 X16,5,17,6 X12,18,13,17 X20,16,7,15 X4,19,5,20 |
| Gauss code | {1, -2, 3, -10, 7, -5}, {4, -1, 2, -3, 6, -8, 5, -4, 9, -7, 8, -6, 10, -9} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1)^2 t(2)^4-4 t(1)^2 t(2)^3+4 t(1) t(2)^3+4 t(1)^2 t(2)^2-7 t(1) t(2)^2+4 t(2)^2+4 t(1) t(2)-4 t(2)+1}{t(1) t(2)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{8}{q^{9/2}}-\frac{11}{q^{7/2}}-q^{5/2}+\frac{10}{q^{5/2}}+3 q^{3/2}-\frac{10}{q^{3/2}}-\frac{1}{q^{15/2}}+\frac{3}{q^{13/2}}-\frac{6}{q^{11/2}}-5 \sqrt{q}+\frac{8}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^5+3 a^5 z^3+3 a^5 z+2 a^5 z^{-1} -a^3 z^7-5 a^3 z^5-10 a^3 z^3-10 a^3 z-3 a^3 z^{-1} +2 a z^5+7 a z^3-z^3 a^{-1} +6 a z-2 z a^{-1} +a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^3 a^9-3 z^4 a^8-6 z^5 a^7+5 z^3 a^7-2 z a^7-8 z^6 a^6+10 z^4 a^6-2 z^2 a^6-9 z^7 a^5+19 z^5 a^5-13 z^3 a^5+7 z a^5-2 a^5 z^{-1} -6 z^8 a^4+10 z^6 a^4+4 z^4 a^4-7 z^2 a^4+3 a^4-2 z^9 a^3-5 z^7 a^3+31 z^5 a^3-31 z^3 a^3+12 z a^3-3 a^3 z^{-1} -9 z^8 a^2+31 z^6 a^2-26 z^4 a^2+z^2 a^2+3 a^2-2 z^9 a+3 z^7 a+10 z^5 a-17 z^3 a+5 z a-a z^{-1} -3 z^8+13 z^6-17 z^4+6 z^2+1-z^7 a^{-1} +4 z^5 a^{-1} -5 z^3 a^{-1} +2 z a^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



