L11n118
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n118's Link Presentations]
| Planar diagram presentation | X6172 X3,15,4,14 X9,16,10,17 X11,21,12,20 X21,9,22,8 X7,19,8,18 X19,13,20,12 X15,10,16,11 X17,5,18,22 X2536 X13,1,14,4 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -6, 5, -3, 8, -4, 7, -11, 2, -8, 3, -9, 6, -7, 4, -5, 9} |
| A Braid Representative | ||||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-2) (v-1) (2 v-1)}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -10 q^{9/2}+11 q^{7/2}-13 q^{5/2}+11 q^{3/2}-\frac{2}{q^{3/2}}+q^{15/2}-3 q^{13/2}+7 q^{11/2}-9 \sqrt{q}+\frac{5}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ 2 z^5 a^{-3} -4 z^3 a^{-1} +6 z^3 a^{-3} -3 z^3 a^{-5} +2 a z-6 z a^{-1} +8 z a^{-3} -5 z a^{-5} +z a^{-7} +a z^{-1} -2 a^{-1} z^{-1} +3 a^{-3} z^{-1} -3 a^{-5} z^{-1} + a^{-7} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 z^9 a^{-3} -2 z^9 a^{-5} -6 z^8 a^{-2} -10 z^8 a^{-4} -4 z^8 a^{-6} -5 z^7 a^{-1} -6 z^7 a^{-3} -4 z^7 a^{-5} -3 z^7 a^{-7} +17 z^6 a^{-2} +27 z^6 a^{-4} +8 z^6 a^{-6} -z^6 a^{-8} -z^6+13 z^5 a^{-1} +30 z^5 a^{-3} +25 z^5 a^{-5} +8 z^5 a^{-7} -24 z^4 a^{-2} -22 z^4 a^{-4} +z^4 a^{-6} +3 z^4 a^{-8} -4 z^4-3 a z^3-23 z^3 a^{-1} -39 z^3 a^{-3} -25 z^3 a^{-5} -6 z^3 a^{-7} +11 z^2 a^{-2} +7 z^2 a^{-4} -3 z^2 a^{-6} -3 z^2 a^{-8} +4 z^2+4 a z+13 z a^{-1} +18 z a^{-3} +12 z a^{-5} +3 z a^{-7} -2 a^{-2} +2 a^{-6} + a^{-8} -a z^{-1} -2 a^{-1} z^{-1} -3 a^{-3} z^{-1} -3 a^{-5} z^{-1} - a^{-7} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



