L11n137

From Knot Atlas
Revision as of 02:41, 3 September 2005 by DrorsRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n136.gif

L11n136

L11n138.gif

L11n138

L11n137.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n137 at Knotilus!


Link Presentations

[edit Notes on L11n137's Link Presentations]

Planar diagram presentation X8192 X18,11,19,12 X10,4,11,3 X2,17,3,18 X12,5,13,6 X6718 X16,10,17,9 X13,20,14,21 X15,22,16,7 X4,20,5,19 X21,14,22,15
Gauss code {1, -4, 3, -10, 5, -6}, {6, -1, 7, -3, 2, -5, -8, 11, -9, -7, 4, -2, 10, 8, -11, 9}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation L11n137 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
0         1-1
-2        4 4
-4       42 -2
-6      73  4
-8     65   -1
-10    66    0
-12   46     2
-14  36      -3
-16 14       3
-18 3        -3
-201         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n136.gif

L11n136

L11n138.gif

L11n138